
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Future Generation Computer Systems 26 (2010) 654–667

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Design and implementation of the gLite CREAM job management service
Cristina Aiftimiei a,1, Paolo Andreetto a, Sara Bertocco a, Simone Dalla Fina a, Alvise Dorigo a,
Eric Frizziero a, Alessio Gianelle a, Moreno Marzolla b,∗, Mirco Mazzucato a, Massimo Sgaravatto a,
Sergio Traldi a, Luigi Zangrando a
a Istituto Nazionale di Fisica Nucleare (INFN), via Marzolo 8, I-35131 Padova, Italy
b Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura A. Zamboni 7, I-40127 Bologna, Italy

a r t i c l e i n f o

Article history:
Received 4 May 2009
Received in revised form
10 December 2009
Accepted 14 December 2009
Available online 21 December 2009

Keywords:
Web services
gLite middleware
Grid computing
Grid job management service
Notification service

a b s t r a c t

Job execution and management is one of the most important functionalities provided by every modern
Grid systems. In this paper we describe how the problem of job management has been addressed in
the gLite middleware by means of the CREAM and CEMonitor services. CREAM (Computing Resource
Execution and Management) provides a job execution and management capability for Grids, while
CEMonitor is a general purpose asynchronous event notification framework. Both components expose
a Web Service interface allowing conforming clients to submit, manage and monitor computational jobs
to a Local Resource Management System.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Gridmiddleware distributions are often large software artifacts,
which include a set of components providing a basic functionality.
Such capabilities include (but are not limited to) data storage,
authentication and authorization, resource monitoring, and job
management. The job management component is used to submit,
cancel, and monitor jobs which are executed on a suitable
computational resource, usually referred as a Computing Element
(CE). A CE is the interface to a usually large farmof computing hosts
managed by a Local Resource Management System (LRMS), such
as LSF or PBS. Moreover, a CE implements additional features with
respect to the ones provided by the underlying batch system, such
as Grid enabled user authentication and authorization, accounting,
fault tolerance and improved performance and reliability.
In this paper we describe the architecture of Computing

Resource Execution andManagement (CREAM), a system designed

∗ Corresponding author. Tel.: +39 051 2094847; fax: +39 051 2094510.
E-mail addresses: cristina.aiftimiei@pd.infn.it (C. Aiftimiei),

paolo.andreetto@pd.infn.it (P. Andreetto), sara.bertocco@pd.infn.it (S. Bertocco),
simone.dallafina@pd.infn.it (S. Dalla Fina), alvise.dorigo@pd.infn.it (A. Dorigo),
eric.frizziero@pd.infn.it (E. Frizziero), alessio.gianelle@pd.infn.it (A. Gianelle),
marzolla@cs.unibo.it (M. Marzolla), mirco.mazzucato@pd.infn.it (M. Mazzucato),
massimo.sgaravatto@pd.infn.it (M. Sgaravatto), sergio.traldi@pd.infn.it (S. Traldi),
luigi.zangrando@pd.infn.it (L. Zangrando).
1 On leave from NIPNE-HH, Romania.

to efficiently manage a CE in a Grid environment. CREAM provides
a simple, robust and lightweight service for job operations. It
exposes an interface based on Web Services, which enables a
high degree of interoperability with clients written in different
programming languages: currently Java and C++ clients are
provided, but it is possible to use any language with a Web
Service framework. CREAM itself is written in Java, and runs as
an extension of a Java-Axis servlet inside the Apache Tomcat
application server [1].
As stated before, it is important for users to be able to

monitor the status of their jobs. This means checking whether
the job is queued, running, or finished; moreover, extended status
information (such as exit code, failure reason and so on) must
be obtained from the job management service. While CREAM
provides an explicit operation for querying the status of a set
of jobs, it is possible to use a separate notification service in
order to be notified when a job changes its status. This service is
provided by CEMonitor, which is a general purpose asynchronous
notification engine. CEMonitor can be used by CREAM to notify the
user about job status changes. This feature is particularly important
for specialized CREAMclientswhich need to handle a large amount
of jobs. In these cases, CEMonitor makes the expensive polling
operations unnecessary, thus reducing the load on CREAM and
increasing the overall responsiveness.
CREAM and CEMonitor are part of the gLite [2] middleware

distribution and currently in production use within the EGEE
Grid infrastructure [3]. Users can install CREAM in stand-alone

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.12.006



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 655

mode, and interact directly with it through custom clients or
using the provided C++-based command line tools. Moreover,
gLite users can transparently submit jobs to CREAM through
the gLite Workload Management System (WMS). For the latter
case, a special component called Interface to Cream Environment
(ICE) has been developed. ICE receives job submission and
cancellation requests coming from a gLite WMS, and forwards
these requests to CREAM. ICE then handles the entire lifetime of
a job, including registering each status change to the gLite Logging
and Bookkeeping (LB) service [4].

1.1. Related works

The problem of job management is addressed by any Grid
system. Different job management services have been developed
starting from different requirements; furthermore, each service
must take into account the specific features of the middleware it
belongs to.
The UNICORE (Uniform Interface to Computing Resources) [5]

system was initially developed to allow German supercomputer
centers to provide seamless and secure access to their computa-
tional resources. Architecturally, UNICORE is a three-tier system.
The first tier is made of clients, which submit requests to the sec-
ond tier (server level). The server level of UNICORE consists of a
Gateway which authenticates requests from UNICORE clients and
forwards them to a Network Job Supervisor (NJS) for further pro-
cessing. The NJS maps the abstract requests into concrete jobs or
actions which are performed by the target system. Sub-jobs that
have to be run at a different site are transferred to this site’s gate-
way for subsequent processing by the peer NJS. The third tier of the
architecture is the target host which executes the incarnated user
jobs or system functions.
The Advanced Resource Connector (ARC) [6] is a Grid middle-

ware developed by the NorduGrid collaboration. ARC is based on
the Globus Toolkit,2 and basically consists of three fundamental
components: the Computing Servicewhich represents the interface
to a computing resource (generally a cluster of computers); the In-
formation Systemwhich is a distributed database maintaining a list
of know resources; and a Brokering Client which allows resource
discovery and is able to distribute the workload across the Grid.
The Globus Toolkit provides both a suite of services to submit,

monitor, and cancel jobs on Grid computing resources. GRAM4
refers to the Web Service implementation of such services [7].
GRAM4 includes a set of WSRF-compliant Web Services [8] to
locate, submit, monitor, and cancel jobs on Grid computing
resources. GRAM4 is not a job scheduler, but a set of services
and clients for communicating with different batch/cluster job
schedulers using a common protocol. GRAM4 combines job
management services and local system adapterswith other service
components of the Globus Toolkit in order to support job execution
with coordinated file staging.
Initially, the job management service of the gLite middleware

was implemented by the legacy LGC-CE [9], which is based
on the pre-Web Service version of GRAM. The development of
CREAM was motivated by some shortcomings of the LCG-CE
related to performance and security issues. These issues and other
requirements behind the development of CREAMwill be discussed
in Section 3.1.

1.2. Organization of this paper

This paper is organized as follows. In Section 2 we give a
high level overview on the job management chain in the gLite

2 Globus and Globus Toolkit are trademarks of the University of Chicago.

middleware. Then, in Section 3 we restrict our attention on the
CREAM and CEMonitor services: we illustrate the requirements
defined in the gLite design document for the Computing Element,
and give a high level description of CREAMand CEMonitor. Internal
details on CREAM are given in Section 4, and details on CEMonitor
are given in Section 5. The interactionswith CREAMand CEMonitor
which are necessary to handle the whole job submission sequence
are then explained in Section 6. Section 7 describes how CREAM
and CEMonitor are built and deployed in the gLite production
infrastructure. Section 8 contains performance considerations, and
we discuss conclusions and future works in Section 9.

2. Job management in the gLite middleware

In this section we give a brief introduction to the job
management architecture of the gLite middleware. The interested
reader is referred to [2,9] for a more complete description.
Fig. 1 shows the main components involved in the gLite

job submission chain. We will consider job submission to the
CREAM CE only. The JobController+LogMonitor+CondorG and
LCG-CE components are responsible for job management through
the legacy LCG-CE, and will not be described in this paper.
There are two entry points for job management requests: the

gLite WMS User Interface (UI) and the CREAM UI. Both include a
set of command line tools which can be used to submit, cancel and
query the status of jobs. In gLite, jobs are described using the Job
Description Language (JDL) notation, which is a textual notation
based on Condor classads [10]. In Fig. 1 we have emphasized the
paths from the WMS UI to CREAM (top) and to the legacy LCG-CE
(bottom).
The CREAMUI is used to interact directly with a specific CREAM

CE. It is a set of command line tools, written in C++ using the
gSoap engine [11]. The CREAM CLI provides a set of commands to
invoke the Web Services operations exposed by CREAM (the list of
available operations is given in Section 4).
On the other hand, the gLite WMS UI allows the user to

submit andmonitor jobs through the gLiteWorkloadManagement
System (WMS) [12]. The WMS is responsible for the distribution
and management of tasks across Grid resources (in particular
Computing Elements), in such a way that applications are
efficiently executed. Job management through the WMS provides
many benefits compared to direct job submission to the CE:

• The WMS can manage multiple CEs, and is able to forward jobs
to the one which better satisfies a set of requirements, which
can be specified as part of the job description;
• The WMS can be instructed to handle job failures: if a job
aborts due to problems related to the execution host (e.g. host
misconfiguration) the WMS can automatically resubmit it to a
different CE;
• The WMS provides a global job tracking facility using the LB
service;
• TheWMS supports complex job types (job collections, job with
dependencies) which cannot be handled directly by the CEs.

Note that there is a many to many relationship between the
gLite WMS UI and the WMS, that is, multiple User Interfaces can
submit to the same WMS, and multiple WMSs can be associated
with the same WMS UI.
The WMS exposes a Web Service interface which is imple-

mented by the WMProxy component. The core of the WMS is the
Workload Manager (WM), whose purpose is to accept and satisfy
requests for jobmanagement. For job submissions, theWM tries to
locate an appropriate resource (CE) where the job can be executed.
The decision of which resources should be used is the outcome of
the matchmaking process between the requests and the available
resources. The user can specify a set of requirements in the job de-
scription. These requirements represent a set of constraints which



Author's personal copy

656 C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667

Fig. 1. Job submission chain (simplified) in the gLite middleware. Emphasized paths are for job submissions from theWMS User Interface to CREAM (top) and to the legacy
LCG-CE (bottom).

theWM tries to satisfy when selecting the CEwhere the job will be
executed.
Currently, the gLite WMS can submit jobs to CREAM and to the

legacy LCG-CE. Each CE is uniquely identified by a URI called ce-
id. Looking at the ce-id, the WM is able to discriminate whether
the job is to be submitted to a CREAM-based CE, or to a LCG-CE
(URIs denoting a CREAM CE have the prefix cream- in the path).
Interaction with the LCG-CE is handled by the Job Controller/Log
Monitor/CondorG (JC/LM/CondorG) modules within the WMS. In
the case of submission to CREAM-based CEs, jobs are managed by
a different module, called ICE. ICE receives job submissions and
other job management requests from the WM component of the
WMS through a simple messaging system based on local files. ICE
then uses the operations of the CREAM interface to perform the
requested operation. Moreover, it is responsible for monitoring
the state of submitted jobs and for taking the appropriate actions
when job status changes are detected (e.g. to trigger a possible
resubmission if a Grid failure is detected).
ICE can obtain the state of a job in two different ways. The first

one is by subscribing to a job status change notification service
implemented by a separate component called CEMonitor (more
details in Section 5). CEMonitor [13] is a general purpose event
notification framework. CREAMnotifies the CEMonitor component
about job state changes by using the shared, persistent CREAM
backend. ICE subscribes to CEMonitor notifications, so it receives
all status changes whenever they occur. As a fallback mechanism,
ICE can also poll the CREAM service to check the status of ‘‘active’’
jobs for which it did not receive any notification for a configurable
period of time. This mechanism guarantees that ICE knows the
state of jobs even if the CEMonitor service becomes unavailable or
has not been installed.
In general, jobs may require a set of input data files to process,

and produce a set of output data files. The set of input files is
called InputSandBox (ISB), and the set of output files is called
OutputSandBox (OSB). For both submission to the LCG-CE and to
CREAM, data staging (i.e., copying files from/to remote locations) is
performed by the Job Wrapper (JW) which runs on the execution
node and which encompasses the run of the actual user payload.
In either cases, the WM component can safely assume that data
staging is performed downstream on the job submission chain.
The LB service [4] is used by the WMS to store various

information on running jobs, and provide the user with an overall
view on the job state. The service collects events in a nonblocking
asynchronous way, and this information can be used to compute

the job state. LB is also used to store events such as the transfer of
jobs from one component to another one (e.g., from the WMproxy
to the WM): in this way, the user knows the location of each job.
The job status information gathered by the LB is made available
through the gLite UI commands. Note that in the case of direct
submissions through the CREAM UI, the LB service is not used;
however, CREAM itself provides the JobInfo operation for reporting
detailed job status information.

3. CREAM and CEMonitor

3.1. Requirements

The development of CREAM and CEMonitor has been driven
by the need to provide a modern replacement of the LCG-CE for
the gLite middleware. The legacy LCG-CE suffered from several
problems, including:

• Security issues; in particular, the LCG-CE does not support
proper delegation of user credentials;
• Poor performance: the CE could sustain a low submission
rate even on modern hardware (see Section 8 for actual
measurements);
• Reliability issues: in some situations, user jobs disappeared
from the Grid, while still running on the execution node. In
these situations, only site administrators could terminate such
‘‘zombie’’ jobs.
• Lack of support: the code was no longer maintained, so
fixing bugs and making any improvement was increasingly
difficult. For this reason, the EGEE project decided to start the
development of a new Computing Element.

A set of requirements for the new CE were identified
and described in the EGEE design document [14]. Thus, the
development of CREAM and CEMonitor was constrained by these
requirements, which also affected many architectural decisions
which were made. The main (nonfunctional) requirements can be
summarized as follows:

R1. Expose aWeb Service interface. One of the cornerstones defined
in [14] is the adoption of the Service Oriented Architecture
(SOA) paradigm. According to the SOA, a complex software
system should be realized as a collection of loosely coupled
components, each one providing a specific service. The SOA
paradigm can be implemented in different ways, the most



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 657

Fig. 2. Typical deployment of a CREAM service.

common one being through Web Services technologies based
on the family of XML languages. Thus, CREAM and CEMonitor
expose Web Service interfaces, defined using the Web Service
Description Language (WSDL) notation; details are given in
Sections 4 and 5. Despite the fact that processing XML
messages implies a considerable overhead with respect to ad
hoc binary message protocols, this overhead was considered
acceptable for this particular use case.

R2. Authentication based onVOMSproxies. Authentication in gLite is
currently based on the Public Key Infrastructure (PKI) usingGSI
proxies with VOMS extensions [15]. For this reason, CREAM
and CEMonitor (like every other component in gLite) must
support authentication and authorization based on VOMS
proxies. Section 3.3 contains more details on the security
infrastructure.

R3. Support for proper credential delegation. The gLite architecture
heavily relies on the mechanism of delegation to securely
transfer user’s credentials to a service. The delegated service
can then act on behalf of the user as long as the delegation
remains valid (see Section 3.3). Therefore, CREAM supports
credential delegation, because it needs to access input and
output data files stored on remote locations. Note that
credential delegation is computationally heavy, and if abused
can greatly reduce the submission throughput to a CREAM CE
(see Section 8 for performance considerations).

R4. Support for multiple batch systems. The Compute Element must
supportmultiple different batch systems (LSF, PBS/Torque, and
others).

R5. Provide an asynchronous notification service for job status
changes. Explicit polling of jobs on the execution service is not
always efficient, especially when a large number of jobs are
in execution on the underlying batch system. This motivated
the development of CEMonitor, which can be coupled with
CREAM to notify users each time one of their jobs changes
status. CEMonitor is described in Section 5.

R6. Ability to operate as stand-alone components. CREAM and CE-
Monitor were developed to be usable also as stand-alone com-
ponents, that is, outside the gLite WMS service. This proved to
be a wise decision, as the recent trend in the area of Grid mid-
dleware development is to assemble middlewares from inter-
operable components [16]. Section 8 reports the experience
of the ALICE high energy physics experiment which is using
CREAM in stand-alone mode, that is, without the gLite WMS.

R7. Minimum performance and reliability requirements. The EGEE
deployment team defined a set of minimum performance and
reliability requirements for the CE which had to be satisfied
before the certification process could start. According to
these requirements, the CE must handle 5000 simultaneously
running jobs submitted from at least 50 different users. The CE
must handle the above-mentioned load for one month, during
which itmust rununattendedwithout significant performance
degradation. The acceptable job failure rate due to the CEmust
be less than 0.1% over a period of one month. Performance
results are described in Section 8.

In order to reduce the development effort, CREAM and CEMon-
itor rely on some libraries and software packages developed by
the EGEE collaboration. In particular, CREAM use the gLite dele-
gation service to implement credential delegation (needed by re-
quirement R3), and support for multiple batch systems (needed by
requirement R4) is provided by Batch system Local ASCII Helper
(BLAH). Additional security components used by CREAM are LCAS,
LCMAPS and glExec, described in Section 3.3.

3.2. Deployment layout

Fig. 2 shows the typical deployment of a Computing Element
based on CREAM and CEMonitor. Both applications run as Java-
Axis servlets [17] in the Tomcat application server [1]. Requests
to CREAM and CEMonitor traverse a pipeline of additional
components which take care of authorization issues; one of these
components is the Authorization Framework, which is an Axis
plugin for validating and authorizing the requests received by the
services (more details on the security infrastructure will be given
shortly).
CREAM uses an external relational database to store its internal

state. This improves fault tolerance as it guarantees that this
information is preserved across restarts of CREAM. Moreover, the
use of a SQL database improves responsiveness of the service
while performing queries which are needed by the normal CREAM
operations, such as getting the list of jobs associatedwith a specific
user. The database, which is associated with a single CREAM
instance, is accessed through the JDBC interface; in the gLite
deployment we are using MySQL [18], but any database accessible
through JDBC is supported. Note that the database server can be
installed on a dedicated host, as shown in Fig. 2, or can share the
same machine as CREAM and CEMonitor.
CREAM interacts with CEMonitor [13] to provide an asyn-

chronous job status notification service. For each job status change,



Author's personal copy

658 C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667

CREAM notifies CEMonitor, which in turn check whether there are
subscriptions registered for that notification. If so, the notifica-
tion is sent to the user which requested that. Further information
on CEMonitor will be given in Section 5. Note that it is also pos-
sible to use CREAM without CEMonitor, for example if CREAM is
installed behind a firewall which blocks outbound connections. In
this case, of course, asynchronous job status change notifications
are not available.
CREAM can be associated with multiple batch queues (note the

one-to-many association shown in Fig. 2). CREAMsubmits requests
to the LRMS through BLAH [19], an abstraction layer providing a
unified interface to the underlying LRMS. BLAH, in turn, interacts
with the client-side LRMS environment, which might consist of
a set of command line tools which interact with the server-side
LRMS. At the time of writing BLAH supports LSF, PBS/Torque, and
Condor [20]; support for Sun Grid Engine (SGE) is currently being
implemented as well. It is also possible to create other, ad hoc
connectors to interact with other types of batch systems. Note
that a single instance of CREAM can provide access to multiple
underlying LRMS.

3.3. Security

The Grid is a large collaborative resource-sharing environment.
Users and services cross the boundaries of their respective
organizations and thus resources can be accessed by entities
belonging to several different institutions. In such a scenario,
security issues are of particular relevance. There exists a wide
range of authentication and authorization mechanisms, but Grid
security requires some extra features: access policies are defined
both at the level of Virtual Organizations (VOs) and at the level
of single resource owners. Both these aspects must be taken
into account. Moreover, as we will see in the following, Grid
services have to face the problem of dealing with the delegation
of certificates and the mapping of Grid credentials into local batch
system credentials.
Trust Manager. The Trust Manager is the component responsible
for carrying out authentication operations. It is external to CREAM
and CEMonitor, and is an implementation of the J2EE security
specifications [21]. Authentication is based on PKI. Each user (and
Grid service) wishing to access CREAM or CEMonitor is required
to present an X.509 format certificate [22]. These certificates are
issued by trusted entities, the Certificate Authorities (CA). The role
of a CA is to guarantee the identity of a user. This is achieved by
issuing an electronic document (the certificate) that contains the
information about the user and is digitally signed by the CAwith its
private key. An authenticationmanager, such as the TrustManager,
can verify the user identity by decrypting the hash of the certificate
with the CA public key. This ensures that the certificate was issued
by that specific CA. The Trust Manager can then access the user
data contained in the certificate and verify the user identity. One
interesting challenge in a Grid environment is the so-called proxy
delegation. It may be necessary for a job running on a CE to perform
some operations on behalf of the user owning the job. Those
operations might require proper authentication and authorization
support. For example, we may consider the case where a job
running on a CE has to access a Storage Element (SE) to retrieve
or upload some data. This aim is achieved in the Trust Manager
using proxy certificates. RFC3820proxy certificates are an extension
of X.509 certificates [23]. The generation of a proxy certificate is as
follows. If a userwants to delegate her credential to CREAM, shehas
to contact the delegation Port-type of the service. CREAM creates a
public–private key pair and uses it to generate a Certificate Sign
Request (CSR). This is a certificate that has to be signed by the
user with her private key. The signed certificate is then sent back
to CREAM. This procedure is similar to the generation of a valid

certificate by a CA and, in fact, in this context the user acts like
a CA. The certificate generated so far is then combined with the
user certificate, thus forming a chain of certificates. The service
that examines the proxy certificate can then verify the identity
of the user that delegated its credentials by unfolding this chain
of certificates. Every certificate in the chain is used to verify the
authenticity of the certificate at the previous level in the chain. At
the last step, a CA certificate states the identity of the user that first
issues the delegated proxy.

Authorization framework. The aim of the authorization process is
to check whether an authenticated user has the rights to access
services and resources and to perform certain tasks. The decision
is taken on the basis of policies that can be either local or
decided at the VO level. Administrators need a tool that allows
them to easily configure the authorization system in order to
combine and integrate both these policies. For this reason, CREAM
adopts a framework that provides a lightweight, configurable,
and easily deployable policy–engine–chaining infrastructure for
enforcing, retrieving, evaluating and combining policies locally
at the individual resource sites. The framework provides a way
to invoke a chain of policy engines and get a decision result
about the authorization of a user. The policy engines are divided
in two types, depending on their functionality. They can be
plugged into the framework in order to form a chain of policy
engines as selected by the administrator in order to let him set
up a complete authorization system. A policy engine may be
either a Policy Information Point (PIP) or a Policy Decision Point
(PDP). PIPs collect and verify assertions and capabilities associated
with the user, checking her role, group and VO attributes. PDPs
may use the information retrieved by a PIP to decide whether
the user is allowed to perform the requested action, whether
further evaluation is needed, or whether the evaluation should
be interrupted and the user access denied. In CREAM both VO
and ‘‘ban/allow’’ based authorizations are supported. In the former
scenario, implemented via the VOMS PDP, the administrator can
specify authorization policies based on the VOs the jobs’ owners
belong to (or on particular VO attributes). In the latter case the
administrator of the CREAM-based CE can explicitly list all the Grid
users (identified by their X.509 Distinguished Names) authorized
to access CREAM services. For what concerns authorization on job
operations, by default each user can manage (e.g. cancel, suspend,
etc.) only her own jobs. However, the CREAM administrator can
define specific ‘‘super-users’’ who are empowered to manage also
jobs submitted by other users.

Credential mapping. The execution of user jobs in a Grid environ-
ment requires isolation mechanisms for both applications (to pro-
tect these applications from each other) and resource owners (to
control the behavior of these arbitrary applications). In the absence
of solutions based on the virtualization of resources (VM), CREAM
implements isolation via local credential mapping, exploiting tra-
ditional Unix-level security mechanisms like a separate user ac-
count per Grid user or per job. This Unix domain isolation is im-
plemented in the form of the gLExec system [24], a sudo style
program which allows the execution of the user’s job with local
credentials derived from the user’s identity and any accompany-
ing authorization assertions. This relation between the Grid cre-
dentials and the local Unix accounts and groups is determined by
the Local Credential MAPping Service (LCMAPS) [25]. gLExec also
uses the Local Centre Authorization Service (LCAS) to verify the
user proxy, to check if the user has the proper authorization to use
the gLExec service, and to check if the target executable has been
properly ‘‘enabled’’ by the resource owner.



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 659

4. The CREAM service

The main functionality of CREAM is job management. Users
submit jobs described as a JDL expression [26], and CREAM
executes it on an underlying LRMS (batch system). The JDL is
a high level, user oriented notation based on Condor classified
advertisements (classads) [10] for describing jobs and their
requirements. CREAM uses a JDL dialect which is very similar to
the one used to describe jobs in the gLite WMS. There are however
some differences between the CREAM and WMS JDL, which are
motivated by the different role of the job execution and workload
management services. As described in Section 2, the gLite WMS
receives job submission requests which possibly include a set of
user-defined requirements,which are used by theWMto select the
CE where the job is executed. Of course, once the selection is done,
there is no need for the CE to further process the job requirements
as they are no longer relevant. Similarly, there are other kind of
informationwhich onlymake sense for the CREAM JDL, and not for
the WMS JDL.
CREAM supports the execution of batch (normal) and parallel

(MPI) jobs. Normal jobs are single ormultithreaded applications re-
quiring one CPU to be executed; MPI jobs are parallel applications
which usually require a larger number of CPUs to be executed, and
whichmake use of theMPI library for interprocess communication.
As already introduced in Section 2, applications executed by

CREAMmight request a set of input data files to process (ISB), and
might produce a set of output data files (OSB). CREAM transfers
the ISB to the executing node from the client node and/or from
Grid storage servers. The ISB is staged in before the job is allowed
to start. Similarly, files belonging to the OSB are automatically
transferred out of the execution node when the job terminates.
As an example, consider the JDL given in Box I processed by

CREAM.
With this JDL a normal (batch) job will be submitted. Besides

the specification of the executable /sw/command (which must
already be available in the file system of the executing node, since
it is not listed in the ISB), and of the standard output/error files, it
is specified that the files file1, file2, file3, file4 will have
to be transferred to the executing node as follows:

• file1 and file3will be copied from the client UI file system
• file2 will be copied from the specified GridFTP server
(gsiftp:renewal//se1.pd.infn.it:1234/data/file
2)
• file4 will be copied from the GridFTP server specified by
the InputSandboxBaseURI JDL attribute gsiftp://se2.
cern.ch:5678/tmp).

It is also specified that the files sim.err and sim.out (speci-
fied by the OutputSandbox attribute) must be automatically up-
loaded into gsiftp://se1.pd.infn.it:5432/tmp when the
job completes its execution.
The pre- and post-staging of data is handled by a shell script,

called Job Wrapper (JW), which is what is actually sent for
execution on the LRMS. As the name suggests, the script ‘‘wraps’’
the executable by taking care of fetching external data, then calling
the executable and finally putting the output data to the correct
remote locations. The JW is assembled by CREAM according to the
JDL and sent to the LRMS.
Other typical job management operations (job cancellation, job

status with different levels of verbosity and filtering, job listing,
job purging) are supported.Moreover users are allowed to suspend
and resume jobs submitted to CREAM-based CEs, provided that the
underlying LRMS supports this feature.
For what concerns security, authentication (implemented

using a GSI-based framework [7]) is properly supported in
all operations. Authorization on the CREAM service is also

Fig. 3. CREAM internal architecture.

Table 1
CREAM interface operations.

Lease management operations

SetLease Creates a new lease, or renews an existing lease
GetLease Gets information on a lease with given ID
JobSetLeaseId Associates a lease with a job
GetLeaseList Gets the list of all active leases
DeleteLease Deletes a lease, and purge all associated jobs

Job management operations

JobRegister Registers a new job for future execution
JobStart Starts execution of a registered job
JobCancel Request terminates a job
JobPurge Purges all information of a job
JobSuspend Suspends execution of a running job
JobResume Resumes execution of a suspended job
JobStatus Gets the status of a job
JobInfo Gets detailed information about a job
JobList Gets the list of all active jobs

Service management operations

acceptNewJobSubmissions Enables/disables new job submissions
getServiceInfo Gets general information about the service

implemented, supporting both VO-based policies and policies
specified in terms of individual Grid users. A Virtual Organization is
a concept that supplies a context for operation of the Grid that can
be used to associate users, their requests, and a set of resources.
CREAM interacts with the VO Membership Service (VOMS) [15]
to manage VOs; VOMS is an attribute issuing service which
allows high level group and capabilitymanagement and extraction
of attributes based on the user’s identity. VOMS attributes are
typically embedded in the user’s proxy certificate, enabling the
client to authenticate as well as to provide VO membership and
other evidence in a single operation.
Fig. 3 shows the (simplified) internal structure of CREAM. As

can be seen, CREAM exposes two different Web Service interfaces,
which are shown in Fig. 3: a legacy interface, and a Basic Execution
Service (BES)-compliant one. The operations of the legacy interface
are listed in Table 1.
The first group of operations (Lease Management) allows the

user to define and manage leases associated with jobs. When
job submissions arrive through the gLite WMS, it is essential
that all jobs submitted to CREAM eventually reach a terminal



Author's personal copy

660 C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667

[
Type = "job";
JobType = "normal";
Executable = "/sw/command";
Arguments = "60";
StdOutput = "sim.out";
StdError = "sim.err";
OutputSandbox = {

"sim.err",
"sim.out"

};
OutputSandboxBaseDestURI = "gsiftp://se1.pd.infn.it:5432/tmp";
InputSandbox = {

"file:///home/user/file1",
"gsiftp://se1.pd.infn.it:1234/data/file2",
"/home/user/file3",
"file4"

};
InputSandboxBaseURI = "gsiftp://se2.cern.ch:5678/tmp";

]

Box I.

state (and thus eventually get purged from the CREAM server),
even in cases when CREAM can no longer be contacted due to
network partitioning. The gLite WMS has been augmented with
an additional component, ICE, which is responsible for interacting
with CREAM. ICE and CREAM use a lease-based protocol to
ensure that all jobs get eventually purged by CREAM. Each job
submitted through ICE has an associated lease time, which must
be periodically renewed using the JobLease CREAM operation. ICE
is responsible for renewing the leases associated with active jobs,
i.e. jobs which are not yet terminated. Should a lease expire
before the actual termination of a job, CREAM will purge all jobs
associated with that lease and free all the CE resources used by
them.
The second group of operations (Job Management) is related

to the core functionality of CREAM as a job management service.
Operations are provided to create a new job, start execution of a
job, suspend/resume or terminate a job. Moreover, the user can get
the list of all owned jobs, and it is also possible to get the status of
a set of jobs. The CREAM job state model is shown in Fig. 4, and job
states are described in Table 2.
Finally, the third group of operations (Service Management)

deals with the whole CREAM service. It consists of two operations,
one for enabling/disabling new job submissions, and one for
accessing general information about the service itself. Note
that only users with administration privileges are allowed to
enable/disable job submissions.
Recently we implemented an additional interface to the

CREAM service, compliant with the Basic Execution Service (BES)
specification. BES [27] defines a standard interface for execution
services provided by different Grid systems. The aim of BES
is to favor interoperability of computing elements between
different Grids: the same BES enabled CE could be ‘‘plugged’’
into any compliant infrastructure. BES defines basic operations
for job submission and management. More specifically, the BES
specification defines two Web Services port-types: BES-Factory,
containing operations for creating, monitoring and controlling sets
of jobs, and BES-Management, which allows clients to monitor the
details of and control the BES itself. The Port-types and associated
operations are shown in Table 3.
BES uses the Job Submission Description Language (JSDL) [28]

as the notation for describing computational jobs. The legacy
CREAM interface was defined before BES was available, and also
provides additional methods which are not provided by BES

(notably, the possibility to renew a user proxy certificate, which
is useful to avoid user proxy expiration while a job is running).
The BES interface for CREAM uses a different security mechanism,
which is based on Security Assertion Markup Language (SAML)
assertions [29]. It should be observed that there are currently
no production users of the BES/JSDL/SAML interface for CREAM;
we consider the current BES and JSDL specifications too limited
to be usable in production [30], so we are putting effort in
improving these specifications within the Open Grid Forum (OGF)
community, rather than support them as they are now.
CREAM can be seen as an abstraction layer on top of an

LRMS (batch system), which extends the LRMS capabilities with
an additional level of security, reliability, and integration with
a Grid infrastructure. CREAM supports different batch systems
(requirement R4 on Section 3.1) through the concept of LRMS
connectors. An LRMS connector is an interface for a generic
batch system. Currently, CREAM supports all the batch systems
supported by BLAH [19] through a specific instance of LRMS
connector called the BLAH connector module.
CREAM has been developed around an internal core, which is a

generic command executor. The core accepts abstract commands
which are enqueued and executed by apool of threads. It is possible
to customize the core by defining concrete implementations of
the abstract command interface. Two kind of commands can be
defined: synchronous and asynchronous. Synchronous commands
must be executed immediately upon receipt, while asynchronous
command execution can be deferred at a later time. Moreover,
it is possible to define sequential or parallel commands. When a
parallel command is being executed, other commands (parallel
or sequential) can be concurrently executed by other threads
in the pool. When a sequential command is being executed, no
other commands operating on the same job are executed by
any other thread, until the sequential command terminates. The
job management interfaces (both the BES and the legacy one)
instantiate the correct command type to execute the operations
requested by the users.
During the development of CREAM, several design decisions

were made in order to cope with the main limitations of job
management systems: a single operation can take a significant
amount of time to complete (depending on the number of running
jobs and/or the kind of underlying LRMS), so that clients are
prone to experience broken connections due to timeouts. This
problem is essential rather than accidental (using the terminology



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 661

Fig. 4. CREAM job states.

Table 2
Description of the CREAM job states.

Registered The job has been submitted to CREAM with the JobRegister operation
Pending The user invoked the JobStart operation to start the job execution
Idle The LRMS (batch system) accepted the job for execution. The job is now in the LRMS queue
Running The Job Wrapper is being executed
Really Running The actual user job is being executed
Held The job has been suspended, e.g. because the user issued the JobSuspend operation. The job can be resumed in its previous state

with the JobResume operation
Done-OK The job terminated correctly
Done-Failed The job terminated with errors
Cancelled The job has been cancelled, e.g. because the user invoked the JobCancel operation to terminate it
Aborted Submission to the LRMS failed

Table 3
BES port-types and operations.

BES-management port-type

StartAcceptingNewActivities Administrative operation: requests that the BES service start accepting new activities
StopAcceptingNewActivities Administrative operation: requests that the BES service stop accepting new activities

BES-factory port-type

CreateActivity Requests the creation of a new activity; in general, this operation performs the submission of a new computational job, which is
immediately started

GetActivityStatuses Requests the status of a set of activities
TerminateActivities Requests termination of a set of activities
GetActivityDocuments Requests the JSDL document for a set of activities
GetFactoryAttributeDocument Requests the XML document containing the properties of this BES service

of Brooks [31]) because it is dependent on the underlying LRMS.
In order to cope with this, the following design decisions were
applied:

• Process user requests asynchronously. Given that a single job
management operation can, in the worst case, take tens of
seconds to complete, the methods exposed by the CREAM
interface return as soon as the appropriate LRMS operation
has been scheduled for execution. For example, if the JobCancel
operation returns successfully, it does not mean that the
job has been cancelled, but only that the appropriate LRMS
cancel operation has been scheduled. Actual cancellationmight
require a longer time, and might even fail eventually due to
LRMS internal reasons. After successfully issuing the JobCancel
operation, the client must either check with JobStatus if the job
has actually been terminated, or wait to receive an appropriate
asynchronous status change notification.
• Bulk operations. Jobmanagement usually involves users sending
hundreds of jobs to a single CE. Sometimes the client wants
to execute the same operation on many jobs, e.g., cancel
all running jobs, check the status of all running jobs and

so on. Issuing a single command for each job is inefficient,
so CREAM supports bulk commands. Most of the operations
shown in Table 1 accept a list of job IDs as input, and
apply the same operation to all jobs whose ID appears
in the list. If the underlying batch system supports bulk
operations as well, BLAH issues a single bulk command to
the LRMS, otherwise multiple individual commands are sent.
Asynchronous command execution is especially important in
the case of bulk commands, because their completion is likely
to require a much longer than the SOAP connection timeout.
• Favor notifications over polling. Querying the status of a large
number of jobs is a particularly slow operation; unfortunately,
it is also one of the most frequently invoked ones, so it must
be supported efficiently. CREAM addresses this problem in two
ways. The first is to rely on BLAH for receiving status change
notifications from the LRMS. BLAH can parse the LRMS log
files to get status changes without using the (usually slow)
command line tools provided by the batch system. CREAM
stores all status changes for each job in its internal SQLdatabase,
so a JobStatus or JobInfo operation only involve a SQL query.



Author's personal copy

662 C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667

Fig. 5. Internal structure of CEMonitor.

The second is to provide users with an asynchronous job status
notification system provided by CEMonitor (see Section 5).
• Master–worker paradigm. CREAM, as any other jobmanagement
service, must be able to accept and process multiple commands
in parallel. In order to do so, command execution is delegated
to a pool of worker threads. If different commands are related
to different LRMSs, they can be actually executed in parallel,
reducing the response time as observed by clients.

5. The CEMonitor service

The purpose of CEMonitor is to provide an asynchronous event
notification framework, which can be coupled with CREAM to
notify the users when job status changes occur.
Fig. 5 shows the internal structure of the CEMonitor service.

Similarly to CREAM, CEMonitor is a Java application which runs
in an Axis container within the Tomcat application server. CE-
Monitor uses the same authentication/authorization mechanisms
as CREAM, which has been discussed in Section 3. The operations
supported by CEMonitor are shown in Table 4.
CEMonitor publishes information as topics. For each topic,

CEMonitor maintains the list of events to be notified to users.
Topics can have three different levels of visibility: public, meaning
that everybody can receive events associated with the topic;
group, meaning that only member of a specific VO can receive
notifications; and user, meaning that only the user which created
the topic can receive notifications. Users can create subscriptions
for topics of interest. Each subscription has a unique ID, an
expiration time and an update frequency f . CEMonitor checks
every 1/f seconds whether there are new events for the topic
associated with the subscription; if so, the events are sent to the
subscribed users. Unless a subscription is explicitly renewed by its
creator, it is removed after the expiration time and nomore events
will be notified.
Each topic is produced by a corresponding sensor. A sensor is a

component which is responsible for actually generating events to
be notified for a specific topic. Sensors can be plugged at runtime:
when a new sensor is added, CEMonitor automatically instantiates
the corresponding topic users can subscribe to. Themost important
sensor we currently use is called JobSensor, which fires an event
for each job status changes. When CREAM detects that a job
changes its status (for example, an Idle job starts execution, thus
becoming Running), it notifies the JobSensor by sending amessage
on the network socket where the sensor is listening. Then, the

Fig. 6. Job status change notification in classad Dialect.

Fig. 7. Job status change notification in XML Dialect.

JobSensor triggers a new notification which is eventually sent to
all subscribed users.
Each sensor can provide either asynchronous notifications to

registered listeners, or can be queried synchronously. In both
cases, sensors support a list of so-called query languages. A query
language is a notation (e.g., XPath, classad expressions and so on)
which can be used to ask a sensor to provide only events satisfying
a user-provided condition. When an event satisfies a condition,
CEMonitor triggers an action on that event. In most cases, the
action simply instructs CEMonitor to send a notification to the
user for that event. Of course, it is possible to extend CEMonitor
with additional types of user-defined actions. When registering
for asynchronous notifications with the Subscribe operation (see
Table 4), the user passes a query expressed in one of the supported
query languages as parameter. For that subscription, only events
matching the query are notified.
Sensors support different dialects. A dialect is a specific output

format which can be used to render events. This means that a
sensor can publish information in different formats (e.g., job status
change information could be made available either in Condor
classad format [10], or in XML format). When a user subscribes to
a topic, she can also specify an appropriate dialect for rendering
the notifications. CEMonitor will then apply the correct rendering
before sending the notifications.
We show in Fig. 6 an example of job status change notification.

The notification is in Condor classad format, and contains a set of
attributes with their associated values. CREAM_JOB_ID is the ID
of the job which changed status; CREAM_URL is the endpoint of
the CREAM service where the job is being executed; JOB_STATUS
is the current job status (in human-readable format); TIMESTAMP
represents the time (in seconds since epoch) when the job status
change happened; WORKER_NODE is the name of the execution
host for the job. In this case, the job has not started execution yet,
so the information on the worker node is reported as not available.
Fig. 7 shows an XML rendering of the same information.
It must be stressed that CEMonitor is not strictly coupled

with CREAM. It is instead a generic framework for information
gathering and provisioning. For example in the context of the Open
Science Grid (OSG) ReSS project is used to manage Grid resource
information [32].

6. Putting the components together

In this section we summarize the interactions between ICE
and CREAM/CEMonitor with the UML Sequence Diagram shown in
Fig. 8. The same kind of interaction can be performed by a generic
client submitting jobs directly to CREAM (i.e., without using the
gLite WMS).
The relevant messages shown in the diagram are as follows:
1. ICE invokes the getProxyReq operation on the Delegation
service. The request parameter is a string which represents



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 663

Table 4
CEMonitor interface operations.

Service management operations

GetInfo Gets information about the CEMonitor service, including
the version and a brief description of the service, plus a
list of available Topics and Actions.

Lease management operations

Subscribe Subscribes for notifications. The user specifies the topic, a
query to be executed and a set of actions to trigger when
the Query succeeds. The notification rate can also be
specified as parameter.

Update Updates an existing Subscription: it is possible to modify
the topic, query, triggered actions and/or notification
rate.

GetSubscriptionRef Gets the list of all subscription IDs and associated
expiration times belonging to the caller.

GetSubscription Gets detailed information on a set of subscriptions given
their unique IDs.

Unsubscribe Removes an existing subscription. Events associated with
that subscription will no longer be notified.

PauseSubscription Pauses the stream of notifications associated with a given
subscription ID.

ResumeSubscription Resumes sending notifications associated with a
previously paused subscription.

GetTopics Gets the list of Topics supported by CEMonitor.
GetTopicEvent Getsthe list of events associated with the specified Topic.

Fig. 8. Overall job submission sequence diagram.

the delegation ID which will be associated with the delegated
credentials.

2. The delegation service replies with a Certificate Sign Request
(CSR), which is a RFC3280 style proxy certificate request in
PEM format with Base64 encoding [22].

3. ICE signs the CSR on behalf of the user which originally
submitted the job. This is possible because ICE itself is using
a user proxy certificate which has been delegated to theWMS.
Then, ICE sends back: the ID of the delegation session initiated
on step 1 and the RFC3280 style proxy certificate, signed by ICE
on behalf of the user, in PEM format with Base64 encoding.

4. The Delegation service transfers the delegation ID/signed
proxy to CREAM. Note that both CREAM and the delegation
service execute on the same physical host, so they can
communicate locally.

5. ICE requests the creation of a new lease, with a given lease
ID. ICE maintains a single lease for each user submitting jobs,
so there are as many lease IDs as the number of unique users
submitting to a specific CREAM CE.

6. ICE is now ready to submit jobs to CREAM using the existing
delegation ID and lease ID. The first step is to invoke the
JobRegister CREAM operation: this operation prepares the
job for execution, by first creating some temporary files for
internal use on the CE host.

7. The CREAM service registers the job, creates all the temporary
files and returns a CREAM job ID which can be used from now
on to refer to this job.

8. ICE invokes the JobStart operation, using the CREAM job ID as
parameter, to request that the job is actually transferred to the
LRMS, and to request that execution begins.

9. CREAM forwards the job to the LRMS; the job is added to the
LRMS batch queue, and will eventually be executed.

10. ICE subscribes to CEMonitor to receive job status change
notifications. This is done only if there are no active
subscriptions on that specific CREAM CE; if so, there is no need
to create a new subscription, as it is possible to use the existing
one.

11. CEMonitor returns a Subscription ID, which can be used later
on to renew, modify or cancel the subscription.

12. The LRMS, through BLAH (see Section 4), notifies CREAM about
each job status change. CREAM in turn informs CEMonitor.

13. CEMonitor notifies ICE a job status change; note that, in
order to reduce round-trip times, CEMonitor batches multiple
related notifications which are sent together to subscribed
clients.

14. ICE periodically queries the job states directly to the CREAM
service using the JobStatus operation.

15. When the job terminates, ICE invokes the JobPurge operation
to remove all temporary files which have been created on the
CE node.

We remark that it is sufficient to perform a single delegation
operation and to create a single lease for each user. So, after the first
job has been submitted, all subsequent submissions for the same
user require only the interactions shown in box (a) of Fig. 8. The
interactions in box (b) are executed whenever CEMonitor notifies
new job status changes. Finally, the interactions shown in box
(c) are executed only when ICE does not receive status change
notifications for some jobs for longer than a configurable threshold.
We omitted from Fig. 8 the operations required to renew the

delegations when they are about to expire, and to renew the leases
when they are about to expire. Delegation renewal involves exactly
the same operations required for delegating credentials for the
first time (operations 1 through 4 in the sequence diagram); lease
renewal is performed by calling SetLeasewith an existing lease ID,
as in operation 5 in the diagram.

7. Build, installation and usage

All the components of the gLite middleware (including
CREAM and CEMonitor) are built using the ETICS Build and Test
facility [33]. ETICS is an integrated system for the automated
build, configuration, integration and testing of software. Using
ETICS it is possible to integrate existing procedures, tools and
resources in a coherent infrastructure, additionally providing an
intuitive access point through a Web portal. The ETICS system
allows developers to assemble multiple components, each one
being developed independently, into a coherent software release.



Author's personal copy

664 C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667

Fig. 9. Layout of the testbed.

Each software component can use its own buildmethod (e.g., Make
for C/C++ code, Ant for Java code and so on), and ETICS provides
a wrapper around that so that components or subsystems can
be checked out and built using a common set of commands. The
ETICS system can automatically produce and publish installation
packages for the components it builds; multiple target platforms
can also be handled.
CREAM and CEMonitor are included in the gLite 3.1 software

distribution, which is provided as a set of different deployment
modules (also called node types) that can be installed separately.
CREAM and CEMonitor are installed and configured together as
one of these modules, called creamCE. For what concerns the
installation, the main supported platform, at present, is CERN
Scientific Linux 4 (SLC4), 32-bit flavor; porting the whole gLite
stack to CERN Scientific Linux 5 (64 bit) is underway. For the
SLC4 platform, the gLite creamCEmodule is available in RPM [34]
format and the recommended installation method is via the
gLite yum repository. For what concerns the configuration, there
exists a manual configuration procedure, and a gLite-compliant
configuration tool also exists. The tool adopted to configure gLite
Grid Services is YAIM (YAIM Ain’t an Installation Manager) [35].
YAIM provides simple configuration methods that can be used
to set up uniform Grid sites. YAIM has been implemented as
a set of bash scripts: it supports a component-based model
with a modularized structure including a YAIM core component,
common to all the gLite middleware software, supplemented by
component specific modules, all distributed as RPMs. For CREAM
and CEMonitor appropriate plugins for YAIM were implemented
in order to get a fully automated configuration procedure.

8. Performance considerations

We evaluate the performance of the CREAM service in term of
throughput (number of submitted jobs/s), comparing CREAMwith
the LCG-CE currently used in the gLitemiddleware, considering the
submission through the WMS. To do so, we submit 1000 identical
jobs to an idle CE. The jobs are submitted using the credentials of
four different users (each user submits 250 jobs).
The layout of the testbed is shown in Fig. 9. All jobs are submit-

ted using aWMSUI installed on the hostcream-15.pd.infn.it
located at INFN Padova. We always use the gLite WMS UI (see
Fig. 1) for submissions to both CREAM and the LCG-CE (that is,
we do not use direct CREAM submission): the reason is that,
at the moment, the vast majority of users are submitting jobs
through the gLite WMS. The UI transfers the jobs to the WMS
host devel19.cnaf.infn.it located at INFN CNAF in Bologna.
The WMS submits jobs through ICE to the CREAM service run-
ning on cream-21.pd.infn.it located at INFN Padova. The
JobController+CondorG+LogMonitor components of the WMS
submit jobs to a LCG-CE running on cert-12.pd.infn.it, also
located at INFN Padova. Both CREAMand the LCG-CE are connected
to the same (local) batch system running the LSF batch scheduler.

We are interested in examining the submission rate from ICE
and JC/CondorG/LM to CREAM and LCG-CE respectively; this is an
HB (Higher is Better) metric, as higher submission rate denotes
better performance. To compute the submission rate we consider
the time elapsed since the first job is dequeued by ICE or JC from
their respective input queues, to the time the last job has been
successfully transferred to the batch system. Note that we do not
take into consideration the time needed to complete execution of
the jobs, as this time is independent from the CE.
In order to ensure that the transfer from the WMS UI to the

WMS is not the bottleneck in our tests, we execute the following
steps:

1. We switch off the ICE or JC component of the WMS;
2. We submit 1000 jobs from the WMS UI;
3. When all the jobs have been successfully transferred to the
WMS node, we switch on ICE (or JC, depending on the kind of
test we are performing). At this point ICE (or JC) finds all the
jobs in its input queue, so what we measure here is the actual
transfer rate from the WMS to the CE.

We analyze the impact of two factors on the submission
throughput. The factors we consider are the following:

• Use of an automatic proxy renewal mechanism versus no
proxy renewal. The automatic proxy renewal mechanism is
normally used for long-running jobs, to ensure that the
credentials delegated to the CE are automatically refreshed
before expiration. Automatic proxy renewal works by first
having the user register her credentials to a so-called MyProxy
Server. The gLite WMS receives a ‘‘fresh’’ proxy from the
MyProxy server, and ICE or JC+CondorG are responsible for
delegating the new credentials to the CE. We remark that no
proxy is actually refreshed in our tests, since transfer of all jobs
to the CE completes long before the user credentials expire.
Nevertheless, the proxy renewal mechanism has an impact on
the submission rate to CREAM via ICE, as will be explained later.
• Use of automatic versus explicit delegation (see Section 3.3).
When automatic delegation is active, the WMS UI delegates a
new proxy certificate to the WMS, which in turn delegates the
proxy again to the CE, for each job submitted to the CE. Thus,
a new delegation operation on the CE is executed before each
submitted job. If explicit delegation is used, the user explicitly
delegates a proxy before the first job is submitted, and uses the
same delegation ID for all subsequent submissions. Thus, in this
case only a single delegation operation is performed on the CE
node.

We analyze four different scenarios with a total of 8 indepen-
dent runs, corresponding to a 22 factorial design with two replica-
tions [36]; each test has been repeated two times, and the average
of the measured submission rates is considered.
Table 5 shows the submission rates for all the experiments.

We observe that the submission rates from JC+CondorG+LM to



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 665

Table 5
Test results; higher (better) submission rates are shown underlined.

Proxy renewal Delegation Submission rate (jobs/s)
CREAM/ICE LCG-CE/JC+CondorG+LM

Test A Disabled Explicit 0.9624 0.3952
Test B Disabled Automatic 0.1660 0.3633
Test C Enabled Explicit 0.8976 0.3728
Test D Enabled Automatic 0.9191 0.3863

the LCG-CE remain more or less the same across the different
experiments. On the other hand, submission rates from ICE to the
CREAM CE are higher in three of our experiments, but incur a
significant penalty in Test B.
The reason for this is in the different way in which CREAM/ICE

and LCG-CE/JC+CondorG+LM implement the transfer of user
credentials from the WMS to the CE node. As already described in
Section 3, CREAM exposes a delegation port-type to allow clients
to securely delegate their credentials to the CE. The delegation
operation (steps 1–4 from Fig. 8) involves the creation on the
server-side of a public/private key pair, which takes a considerable
amount of time. Explicit delegation (Test A and C) allows ICE
to delegate only once for each user: in our tests, as we are
submitting 250 jobs for each of 4 different users, only four
delegation operations are performed, and this causes a significant
improvement of the submission rate.
The JC+CondorG+LM does not implement a proper delegation

operation, but for each job transfers the user credentials to the LCG-
CE using a more lightweight mechanism. This explains why the
submission rate achieved by LCG-CE/JC+CondorG+LM is more or
less independent from the delegation mechanism used (automatic
or explicit). The lack of delegation on the LCG-CE was one of the
reasons why CREAMwas developed, as credential transfer without
proper delegation is no longer considered acceptable.
In Test D we have automatic delegation together with

proxy renewal. This implies that all delegated user proxies are
automatically renewed. Note that if the same user performs two
delegations, the delegated credentials will expire on different
times, and thus in general should be treated separately. However,
if the proxy renewal mechanism is active, all delegations will
be renewed before expiration, so from the user point of view
all her credentials have duration equal to the duration of the
proxy renewal mechanism. For this reason, in situations like Test
D, ICE considers all proxies ‘‘equivalent’’ by performing a single
delegation operation to CREAM for each user which requested
automatic credentials renewal.
The CREAM-based CE was also tested and used for real

production activities. To assess the performance and the reliability
of CREAM, and in particular to verify its usability in production
environments, the Alice LHC experiment [37] performed some
tests which took place during the summer of 2008. About 55000
standard production Alice jobs, each one lasting about 12 hours,
were submitted on a CREAM-based CE at the FZK3 Tier-1 centre.
The CREAM service showed a remarkable stability: no failures
were seen and no manual interventions were needed during
the whole test period. It should be observed that Alice is using
CREAM in stand-alone mode (i.e., using direct job submissions,
bypassing the gLite WMS). For users which do not need the
sophisticated matchmaking capabilities of the gLite WMS, it is
much more efficient to submit directly to CREAM. Doing so it
is possible to bypass the intermediate steps shown in Fig. 1;
furthermore, it is much easier to deploy a single CREAM server

3 Forschungszentrum Karlsruhe, now Karlsruher Institut für Technologie, http://
www.kit.edu/.

rather than a full WMS installation. When used outside the gLite
middleware, CREAM provides access to multiple batch queues,
using a Web Service interface, with a security layer based on
PKI so that job submissions can happen from remote clients.
CREAM clients can be written in any language with support
for Web Services and related technologies (tools for generating
stubs from WSDL interfaces exist for almost any programming
language). CEMonitor provides an asynchronous notification
servicewhich is usually not provided by conventional batch system
managers.
After this first successful assessment, the submission to CREAM-

based CEs has been fully integrated in the Alice Alien software
environment [38]. Alice jobs are currently being submitted in
about a dozen of CREAM CEs deployed in several sites of the EGEE
Grid.

9. Conclusions

In this paperwe described CREAMandCEMonitor, two software
components which are used to implement a job execution and
management service in the gLite middleware. CREAM manages
submissions of jobs to a LRMS. CREAMprovides additional features
on the top of the underlying batch system, such as Grid enabled
user authentication and authorization and integrationwith the rest
of the gLite infrastructure. CEMonitor is a general purpose event
notification service, which can be coupled with CREAM to allow
users to receive notifications about job status changes without
polling the service.
CREAMandCEMonitor have been integrated into the gLiteWMS

using an additional component called ICE. ICE receives requests
from the gLite WM, and handles all interactions with CREAM
and CEMonitor. ICE takes care of delegating user credentials to
CREAM, subscribing to CEMonitor for receiving job status change
notifications, and actually submitting and monitoring jobs. ICE
registers to the gLite LB service all status changes, such that
Grid users know exactly the location and the status of their
jobs.
CREAM and CEMonitor expose a Web Service interface,

which allows easy interoperability with heterogeneous client
applications. Recently, the Grid community is putting considerable
effort in defining standard interfaces to Grid services. The reason
for this interest is twofold: standard interfaces allow different
middlewares to easily share resources and services. Moreover,
standard interfaces improve the software development cycle
by allowing developers to import software components from
other middleware stacks. For these reasons, we implemented
a prototype support for the BES and JSDL specifications in
CREAM [30]. It must be observed that these specifications, in
their current status, are inappropriate for production use, as
they only provide basic functionality. The JSDL specification is
severely limited because it only allows users to describe simple
(batch) jobs, while structured jobs such as collections of tasks
with dependencies cannot be represented using the current
JSDL. Furthermore, security considerations are outside the scope
of the BES specification, which results in the possibility for
different services to claim standard-compliance without being
interoperable due to the use of mutually incompatible security



Author's personal copy

666 C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667

settings. To address these problems, the Grid community is
currently defining extensions of the BES and JSDL specifications
within the Production Grid Infrastructure Working Group.4
CREAM and CEMonitor have been deployed and are currently

in production use in the gLite infrastructure of the EGEE project.
Some of the larger sites have begun to experiment with usage
scenarios which are beyond those which were foreseen in the
original requirements. In particular, deployments were a single
CREAM server manages a large batch system consisting of
thousands of execution nodes pose a real challenge. We are
currently considering new ways to improve the scalability of
CREAM far beyond the levels defined by the requirements (see
Section 3.1). One approach is to adopt clustered configuration,
allowing multiple service instances to balance load and tolerate
failures. However, as CREAM and CEMonitor are both stateful
services, special care must be taken in order to guarantee that
each instance shares the same internal status,while avoiding single
points of failure. We are also investigating how some ideas from
the cloud computing paradigm could be integrated into CREAM.
In particular, we are considering the possibility of dynamically
adjusting the size (number of hosts) of the underlying LRMS
to allow the system to automatically scale whenever needed.
This could be done, for example, by implementing a LRMS
based on Amazon’s EC2 service, such that the batch system
pool could be dynamically increased by instantiating new virtual
hosts.

Acknowledgements

EGEE-3 is a project funded by the European Union under
contract INFSO-RI-222667.
This work was done while M. Marzolla was with the Istituto

Nazionale di Fisica Nucleare (INFN), Padova, Italy.

References

[1] Apache Software Foundation. Jakarta Tomcat Servlet Container, http://tomcat.
apache.org/.

[2] E. Laure, S.M. Fisher, Á. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio, A.
Edlund, Programming the Grid with gLite, Computational Methods in Science
and Technology 12 (1) (2006) 33–45.

[3] Enabling Grids for E-sciencE (EGEE) project web site, http://www.eu-egee.
org/.

[4] D. Kour̆il, et al. Distributed tracking, storage, and re-use of job state
information on the Grid, in: Proceedings of CHEP’04, Interlaken, Switzerland,
2004.

[5] D.W. Erwin, UNICORE—A Grid computing environment, Concurrency and
Computation: Practice and Experience 14 (2002) 1395–1410. http://dx.doi.
org/10.1002/cpe.691.

[6] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson, J.
Nielsen, M. Niinimäki, O. Smirnova, A. Wäänänen, Advanced resource connec-
tor middleware for lightweight computational Grids, Future Generation Com-
puter Systems 23 (2) (2007) 219–240. http://dx.doi.org/10.1016/j.future.2006.
05.008.

[7] I. Foster, Globus Toolkit version 4: Software for service-oriented systems, in:
IFIP International Conference on Network and Parallel Computing, 2005, pp.
2–13.

[8] I. Foster, et al. Modeling stateful resources with web services, white
paper, version 1.1, Mar. 5 2004. Available online at: http://www.ibm.com/
developerworks/library/ws-resource/ws-modelingresources.pdf.

[9] S. Burke, S. Campana, E. Lanciotti, P.M. Lorenzo, V.Miccio, C. Nater, R. Santinelli,
A. Sciabà, gLite 3.1 User Guide–Manuals series, version 1.2, Document
identifier CERN-LCG-GDEIS-722398, Jan. 7 2009. Available online at: https://
edms.cern.ch/document/722398/1.2.

[10] R. Raman, Matchmaking frameworks for distributed resource management,
Ph.D. Thesis, University of Wisconsin-Madison, 2001.

[11] R. van Engelen, gSOAP 2.7.11 User Guide. Oct. 2 2008.
[12] P. Andreetto, et al., The gLite workload management system, Journal of

Physics: Conference Series 119 (6) (2008) 062007. 10pp. http://dx.doi.org/10.
1088/1742-6596/119/6/062007.

4 http://forge.gridforum.org/sf/projects/pgi-wg.

[13] CEMonitor home page, http://grid.pd.infn.it/cemon.
[14] EGEE middleware architecture and planning (release 2), EU Deliverable

DJRA1.4. Jul. 15 2005. https://edms.cern.ch/document/594698/1.0.
[15] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, K. Lőentey,

F. Spataro, From gridmap-file to VOMS: Managing authorization in a Grid
environment, Future Generation Computer Systems 21 (4) (2005) 549–558.
http://dx.doi.org/10.1016/j.future.2004.10.006.

[16] M. Riedel, et al., Interoperation ofworld-wide production e-science infrastruc-
tures, Concurrency and Computation: Practice and Experience 21 (8) (2009)
961–990. http://dx.doi.org/10.1002/cpe.1402.

[17] Apache software foundation. Axis SOAP Container, http://ws.apache.org/axis/.
[18] P. DuBois, MySQL, Addison-Wesley, Professional, 2008.
[19] E. Molinari, et al. A local batch system abstraction layer for global use, in:

Proc. XV International Conference on Computing in High Energy and Nuclear
Physics, CHEP’06, Mumbai, India, 2006.

[20] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: The
Condor experience, Concurrency—Practice and Experience 17 (2–4) (2005)
323–356. http://dx.doi.org/10.1002/cpe.v17:2/4.

[21] Sun Microsystems, Inc., JavaTM Platform Enterprise, Edition, v5.0, API
Specifications, 2007.

[22] R. Housley, W. Polk, W. Ford, D. Solo, RFC3280: Internet X.509 public key
infrastructure certificate and certificate revocation list (CRL) profile, Apr. 2002.
http://www.ietf.org/rfc/rfc3280.txt.

[23] S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson, RFC3820: Internet
X.509 public key infrastructure (PKI) proxy certificate profile, Jun. 2004. http://
www.ietf.org/rfc/rfc3820.txt.

[24] D. Groep, O. Koeroo, G. Venekamp, gLExec: Gluing grid computing to the Unix
world, Journal of Physics: Conference Series 119 (6) (2008) 062032. 11pp.
http://dx.doi.org/10.1088/1742-6596/119/6/062032.

[25] Site authorisation and enforcement services: LCAS and LCMAPS, http://www.
nikhef.nl/grid/lcaslcmaps/.

[26] M. Sgaravatto, CREAM job description language attributes specification for the
EGEE middleware, document identifier EGEE-JRA1-TEC-592336, Aug. 2005.
Available online at: https://edms.cern.ch/document/592336.

[27] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles,
D. Pulsipher, C. Smith, M. Theimer, OGSA basic execution service version 1.0,
OGF specification GFD.108, Aug. 2007. http://www.ogf.org/documents/GFD.
108.pdf.

[28] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D.
Pulsipher, A. Savva, Job Submission Description Language (JSDL) specification,
version 1.0, OGF specification GFD-R.056, Nov. 2005. http://www.gridforum.
org/documents/GFD.56.pdf.

[29] S. Cantor, J. Kemp, R. Philpott, E. Maler, Assertions and protocols for the
oasis Security Assertion Markup Language (SAML) v2.0, OASIS Standard
saml-core-2.0-os, Mar. 15 2005. http://docs.oasis-open.org/security/saml/v2.
0/saml-core-2.0-os.pdf.

[30] P. Andreetto, S. Andreozzi, A. Ghiselli, M. Marzolla, V. Venturi, L. Zan-
grando, Standards-based job management in Grid systems, Technical Note
INFN/TC_08/6, Istituto Nazionale di Fisica Nucleare (INFN), Oct. 9 2008.

[31] F. Brooks Jr., No silver bullet–essence and accidents of software engineering,
Computer 20 (4) (1987) 10–19. http://doi.ieeecomputersociety.org/10.1109/
MC.1987.1663532.

[32] G. Garzoglio, T. Levshina, P. Mhashilkar, S. Timm, ReSS: A resource selection
service for the open science Grid, in: S.C. Lin, E. Yen (Eds.), Grid Computing,
International Symposium on Grid Computing, ISGC 2007, Springer, 2009,
pp. 89–98.

[33] M.-E. Bégin, G.D.-A. Sancho, A.D. Meglio, E. Ferro, E. Ronchieri, M. Selmi, M.
Zurek, Build, configuration, integration and testing tools for large software
projects: Etics, in: N. Guelfi, D. Buchs (Eds.), RISE, in: Lecture Notes in
Computer Science, vol. 4401, Springer, 2006, pp. 81–97. http://dx.doi.org/10.
1007/978-3-540-71876-5_6.

[34] E. Foster-Johnson, Red Hat RPM Guide, 1st ed., Red Hat, 2003.
[35] YAIM home page, http://yaim.info/.
[36] R. Jain, The Art of Computer System Performance Analysis: Techniques for

Experimental Design, in: Measurement, Simulation, and Modeling, Wiley,
1991.

[37] ALICE—A large ion collider experiment at CERN LHC, http://aliceinfo.cern.ch/.
[38] S. Bagnasco, L. Betev, P. Buncic, F. Carminati, C. Cirstoiu, C. Grigoras, A.

Hayrapetyan, A. Harutyunyan, A.J. Peters, P. Saiz, AliEn: ALICE environment
on the GRID, Journal of Physics: Conference Series 129 (6). http://dx.doi.org/
10.1088/1742-6596/119/6/062012.

Cristina Aiftimiei studied mathematics at the University
of Bucharest/Romania, where she obtained the bachelor’s
degree in 1995, as well as the M.Sc. in mathematics in
1996. After graduation she worked for the National In-
stitute for Physics & Nuclear Engineering-‘‘Horia Hulubei’’
as a researcher, from where she is now on leave, being
involved with the EGEE (EGEE, EGEE-II, EGEE-III) & ET-
ICSII project for the Istituto Nazionale di Fisica Nucleare
(INTN) Padova, Italy. She is involved in activities related
to grid computing, INFNGrid middleware deployment &
support.



Author's personal copy

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654–667 667

Paolo Andreetto was born in 1970. He graduated in
1997 in Engineering at the University of Padova. He spent
6 years covering different positions in various ITC firms. He
has been working for INFN since 2004 as senior developer
for the EGEE and OMII-Europe projects.

Sara Bertocco obtained a degree in Electronic Engineering
at the University of Padova in 1995. She worked mainly
as R&D Software Engineer. At present she works on
Grid Computing with focus on testing, certification and
deployment of grid components at INFN (Italian National
Institute of Nuclear Physics). In the past she worked on
control andmonitoring of experimental apparatus at INFN
and on tools for innovation in publishing and science
communication at SISSA-ISAS (International School of
Advanced Physics), Italy.

Simone Dalla Fina graduated in Computer Engineering
at the University of Padova (Italy) in 2004. He started
his activity on Grid Computing within the EGEE projects.
Firstly he dealt with the distributed deployment of
databases for LCG and then he was mainly involved in
the customization and deployment of INFNGRID version
of gLite middleware.

Alvise Dorigo was born in 1972. He graduated in physics
in 1999. Since then he has been involved in software
development and computer farm activities concerning
Computing inHigh Energy Physics andGrid Computing. He
currentlyworks for the Italian Institute for Nuclear Physics
(INFN), where heworks on the development of the CREAM
Computing Element, in particular the CREAM/CEMonC++
API with Web Service technology and the interfacing
between the WMS component and the CREAM CE.

Eric Frizziero was born in Italy in 1973. He is a Senior
Software Engineer at the National Institute of Nuclear
Physics (INFN) — Italy. He obtained the Master of Sciences
(Laurea degree, 5 years) in Computing Engineering in 2000
from the University of Padua and is qualified to practise
the profession of Engineer. After some years of experience
in the IT industry, in 2004 he decided to focus on Grid
computing. He therefore joined INFN and started working
in Grid related projects. His recent activities relate to grid
computing deal mainly with the software designing and
development of Grid components (Instrument Element IE)

and services (CREAM job management service). Moreover, he is also collaborated
with the CERN CMS team developing the CMS software to control and monitor the
CMS data acquisition system of the LHC experiment.

Alessio Gianelle received an M.Sc. degree in mathematics
from the University of Padova, Italy in 1997. Since
2001, he has been involved in research and development
activities concerning Grid Computing. He currently works
for the Italian Institute for Nuclear Physics; his activities,
within the EDG and EGEE-* projects, deal mainly with
the research, development and testing of the Workload
Management Services.

Moreno Marzolla graduated in Computer Science from
the University of Venezia ‘‘Ca’ Foscari’’ (Italy) in 1998
and received a Ph.D. in Computer Science from the
same University in 2004. From 1998 to 2001 he worked
at the Italian National Institute for Nuclear Physics
(INFN) as a software developer for the BaBar experi-
ment. From 2004 to 2005 he was a post-doc researcher
at the University of Venezia. Since 2005 he has been
working at INFN on the EGEE, OMII-Europe and EGEE-
3 projects. He is currently involved with the develop-
ment of the gLite Workload Management System and

the gLite CREAM Computing Element. He has been co-chair of the Produc-
tion Grids Infrastructure (PGI) Working Group at the Open Grid Forum. In
2009 he joined the Department of Computer Science of the University of
Bologna, Italy, where he currently is Assistant Professor. His research interests
include performance modeling of systems, software engineering, and distributed
computing.

Mirco Mazzucato is an INFN Research Manager. Since
2004 he has been Director of INFN CNAF (INFN Advanced
Computing Centre). He currently serves as INFN delegate
and a member of the Management Board in the (W)LCG,
World Computing Grid for LHC Project at CERN. He
is a member of the Project Management Board and
coordinator of the Italian Federation in the FP7 European
project EGEE-III (and the former projects EGEE and EGEE
II). He is also INFN delegate in the Management Boards
of the following European projects: e-NMR, EGI_DS,
OGF-Europe. He is author of more than 250 technical

papers.

Massimo Sgaravatto graduated in Computer Science from
the University of Venezia ‘‘Ca’ Foscari’’ (Italy) in 1998. He
is currently a technologist at the Italian National Institute
for Nuclear Physics (INFN). He has been working in Grid
relatedprojects (mainly in the jobmanagement area) since
2000.

Sergio Traldi received an M.Sc. degree in Computer
Science from the Venice University in 2004. Since 2004 he
has been involved in research and development activities
concerning Grid Computing at INFN (Italian National
Institute of Nuclear Physics), first for the GridCC project
(Grid Enabled Remote Instrumentation with Distributed
Control and Computation), now for the EGEE3-SA1
and e-NMR projects. His principal tasks are develop
applications for Grid Services and DAQ systems. He
also works as site manager for the Italian Grid and
cooperates in cluster systemmaintenance at INFN Padova

(Italy).

Luigi Zangrando was born in 1973 in Venice (Italy)
where he graduated in Computer Science in 2000. Since
2001 he has been involved in research and development
activities at the Italian Institute for Nuclear Physics
(INFN). In particular he was involved (2001–2003) in
the Trigger/Data Acquisition (TriDAS) project of the
CMS experiment at CERN for which he has contributed
significantly in designing and implementing the on-line
software for the data acquisition system. Since 2004,
his main research activity concerns the Grid Computing
within the European project EGEE (Enabling Grid for E-

sciencE). He is currently a member of the EGEE-III project, and he is in charge of
the development of CREAM (Computing Resource Execution andManagement), the
new Component Element of the gLite middleware.


