
Job submission and management through web

services: the experience with the CREAM service

C Aiftimiei1,5, P Andreetto1, S Bertocco1, D Cesini3, M Corvo2,
S Dalla Fina1, S Da Ronco1, D Dongiovanni3, A Dorigo1, A Gianelle1,
C Grandi4, M Marzolla1, M Mazzucato1, V Miccio2, A Sciaba’2,
M Sgaravatto1, M Verlato1 and L Zangrando1

1 INFN Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy
2 CERN, BAT. 28-1-019, 1211 Geneve, Switzerland
3 INFN CNAF, viale Berti Pichat 6/2, 40127 Bologna, Italy
4 INFN Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy

Abstract. Modern Grid middlewares are built around components providing basic
functionality, such as data storage, authentication, security, job management, resource
monitoring and reservation. In this paper we describe the Computing Resource Execution
and Management (CREAM) service. CREAM provides a Web service-based job execution
and management capability for Grid systems; in particular, it is being used within the gLite
middleware. CREAM exposes a Web service interface allowing conforming clients to submit
and manage computational jobs to a Local Resource Management System. We developed a
special component, called ICE (Interface to CREAM Environment) to integrate CREAM in
gLite. ICE transfer job submissions and cancellations from the Workload Management System,
allowing users to manage CREAM jobs from the gLite User Interface. This paper describes
some recent studies aimed at assessing the performance and the reliability of CREAM and ICE;
those tests have been performed as part of the acceptance tests for integration of CREAM and
ICE in gLite. We also discuss recent work towards enhancing CREAM with a BES and JSDL
compliant interface.

1. Introduction
Many Grid middlewares are large software artifacts which provide a set of basic functionalities,
each one implemented by a separate component. Such functionalities include (but are not limited
to) data storage, authentication and authorization, resource monitoring, and job management.
In particular, the job management component is used to submit, cancel, and monitor jobs for
execution on a suitable computational resource, also called Computing Element. A Computing
Element (CE) has a complex structure: it represents the interface to a usually large farm of
computing hosts managed by a Local Resource Management System, such as LSF or PBS.
Moreover, a CE should also provide additional features than those of the underlying batch
system, such as Grid-enabled user authentication and authorization, accounting, fault tolerance
and improved performance and reliability.

Computing Resource Execution and Management is a system designed for efficiently manage
a CE in a Grid environment. The goal of Computing Resource Execution and Management

5 On leave from NIPNE-HH, Romania



(CREAM) is to offer a simple, robust and lightweight service for job operations. CREAM
exposes an interface based on Web Services, which enables a high degree of interoperability
with clients written in different programming languages: currently Java and C++ clients are
provided, but users can use any language with a Web Service framework to generate their own
client interfaces. CREAM is a Java application running as an extension of a Java-Axis servlet
inside the Tomcat application server [1].

CREAM is being developed within the gLite Grid infrastructure [2]. A special component
(called Interface to Cream Environment) has been created to integrate CREAM into the
gLite Workload Management System (WMS), so that gLite users can submit jobs to a CREAM
server in a transparent way. Note, however, that CREAM is a mostly self-contained service,
with few dependencies on the gLite software components. Users can thus install CREAM in
stand-alone mode, and interact directly with it through custom clients, or using the provided
C++-based command line tools.

In this paper we describe the CREAM architecture and highlight its features. We describe its
interface, and show how it has been integrated with the gLite infrastructure. Finally, we show
the results of performance tests which have been done in order to assess CREAM throughput,
compared to the throughput of the other CEs used in gLite.

2. CREAM overview
CREAM main functionality is job submission: users can submit jobs, described via a classad-
based Job Description Language (JDL) expression [3], to CREAM based CEs. CREAM JDL is
the same notation used to describe job characteristics and requirements in the gLite WMS.
The JDL is a high-level, user-oriented language based on Condor classified advertisements
(classads) [4] for describing jobs to be submitted to the CREAM CE service. CREAM supports
the execution of batch (normal) and parallel (MPI) jobs. Normal jobs are single or multithreaded
applications requiring one CPU to be executed; MPI jobs are parallel applications which usually
require a larger number of CPUs to be executed, and which make use of the MPI library for
interprocess communication.

Applications executed by CREAM might need a set of input data files to process, and might
also produce a set of output data files. The set of input files is called InputSandBox (ISB), while
the set of files produced by the application is called OutputSandBox (OSB). CREAM transfers
the ISB to the executing node from the client node and/or from Grid storage servers to the
execution node. The ISB is staged in before the job is allowed to start. Similarly, files belonging
to the OSB are automatically transferred out of the execution node when the job terminates.

As an example, consider the following JDL:

[
Type = "job";
JobType = "normal";
Executable = "/sw/command";
Arguments = "60";
StdOutput = "sim.out";
StdError = "sim.err";
OutputSandbox = {

"sim.err",
"sim.out"

};
OutputSandboxBaseDestURI = "gsiftp://se1.pd.infn.it:5432/tmp";
InputSandbox = {

"file:///home/user/file1",



"gsiftp://se1.pd.infn.it:1234/data/file2",
"/home/user/file3",
"file4"

};
InputSandboxBaseURI = "gsiftp://se2.cern.ch:5678/tmp";

]

With this JDL a normal (batch) job will be submitted. Besides the specification of the
executable sw/command (which must already be available in the file system of the executing
node, since it is not listed in the ISB), and of the standard output/error files, it is specified that
the files file1, file2, file3, file4 will have to be staged on the executing node:

• file1 and file3 will be copied from the client (User Interface (UI)) file system
• file2 will be copied from the specified GridFTP server (gsiftp://se1.pd.infn.it:1234/data/file2)
• file4 will be copied from the GridFTP server specified as InputSandboxBaseURI

(gsiftp://se2.cern.ch:5678/tmp)

It is also specified that the files sim.err and sim.out (specified as OutputSandbox) must
be automatically uploaded into gsiftp://se1.pd.infn.it:5432/tmp when job completes its
execution.

Other typical job management operations (job cancellation, job status with different level
of verbosity and filtering, job listing, job purging) are supported. Moreover users are
allowed to suspend and then restart jobs submitted to CREAM based CEs, provided that
the underlying Local Resource Management System (LRMS) supports this feature. Direct job
submission and management to CREAM can be done with a set of command-line tools (written
in C++); of course, users can produce their own client application which uses CREAM Web
Service Description Language (WSDL) interface. Job submission is also possible through the
gLite Workload Management System, through the ICE component (discussed later).

For what concerns security, authentication (considering a GSI based framework) is properly
supported in all operations. Authorization on the CREAM service is implemented, supporting
both Virtual Organization (VO) based policies and policies specified on the single Grid users.

3. CREAM architecture
Fig. 1 shows the typical deployment of a CREAM server. CREAM runs as a Java-Axis
servlet [5] on the Tomcat application server [1]. CREAM interacts with CEMON [6], which
provides asynchronous job status change notification service, through a CREAM backend
which implements the Java Java Naming and Directory Interface (JNDI) interface. Requests
to CREAM and CEMON traverse a pipeline of additional components which take care of
authorization issues. CREAM submits requests to the LRMS through Batch-system Local
ASCII Helper (BLAH), an abstraction layer for the underlying LRMS. BLAH, in turn, interacts
with the client-side LRMS environment, which might consists of a set of command line tools
which interact with a server-side LRMS

The CREAM service is available through a Web Service interface. The use of Web Services
is one of the key features of CREAM. CREAM is intended to offer job management facilities
to the widest range possible of consumers. This includes not only other components of the
same middleware, but also single users and other heterogeneous services. Thus, we need a
mechanism that let potential users to be as much free as possible in using their own tools and
languages to interface to CREAM. The Web Services technology offers all the interoperability
characteristics that are needed to fulfill the above requirements. From the implementation point
of view, CREAM is a Java application which uses Apache Tomcat as application server; CREAM
executes inside an Axis container, and exposes a SOAP interface.



AXIS

Trust
Manager

CREAM

Delegation

Authz
Fwk ...

AXIS

CEMON
Authz
Fwk ...

TOMCAT

CREAM

backend

JNDI

JNDI

Web Service

Interface

Authz
Fwk ...

Figure 1. Typical deployment of
a CREAM server

BES Interface
Legacy

WS Interface

Authorization Layer (VOMS)

Authentication Layer (SSL/TLS)

LRMS Connector

BLAH
Connector Other...

CREAM Core

Lease
Manager

Journal
Manager

Worker
Thread

Worker
Thread

...

Client-side LRMS

CREAM

BLAH

Figure 2. CREAM layered
architecture

Fig. 2 shows a layered view of the CREAM service. Names in italic denote interfaces, the
other ones denoting actual components. The figure shows the internal structure of CREAM,
which we now discuss in detail.

3.1. CREAM interfaces
CREAM exposes two different interfaces: the legacy one, and the new BES-compliant interface
(the latter still under development). Basic Execution Service (BES) is a recent specification [7]
for a standard interface to execution services provided by different Grid systems. The aim
of Basic Execution Service (BES) is to favor interoperability of computing elements between
different Grids: the same BES-enabled CE can be “plugged” into any compliant infrastructure;
moreover, sharing of resources between different Grids is possible. BES defines basic operations
for job submission and management. More specifically, the BES specification defines three Web
Services port-types as follows:

BES-Factory This port-type allows clients to create, monitor, and control sets of jobs, and
to monitor BES attributes, such as the number of jobs currently being instantiated. This
port-type is intended for use by ordinary clients.

BES-Activity This port-type allows clients to create, monitor, and control individual
activities. This port-type is intended for use by ordinary clients.

BES-Management This port-type allows clients to monitor the details of and control the BES
itself. This port-type is intended for use by system administrators.

BES uses the Job Submission Description Language (JSDL) [8] as the notation for describing
computational jobs. The legacy CREAM interface was defined before BES was available, and
also provides additional methods which are not provided by BES (notably, the possibility to
renew a user proxy certificate, which is useful to avoid user proxy expiration while a job is
running).



3.2. CREAM backend
The CREAM backend is a permanent storage where CREAM saves the data related to the jobs
it is managing. The CREAM backend is implemented as a custom Java-based persistent storage
mechanism which implements the Java Naming and Directory Interface [9] interface. CREAM
also creates a directory for each user that successfully registered a job. The directory, which is
located on the filesystem of the CREAM server, contains all informations about the job, such
as its description in form of a job JDL, the certificate used by the user to submit it, etc.

3.3. Journal Manager
The Journal Manager (JM) is a pool of threads of the CREAM main process. User job
commands (job submission requests, job cancellations, etc.) are enqueued into the JM, which
stores them on persistent storage to preserve them in case of system failure. The JM then
serves these requests, interacting with the underlying LRMS through BLAH. The JM is used to
parallelize job submission: multiple job management commands are simultaneously forwarded
to the LRMS to improve the overall throughput. Commands submitted by the same user are
executed sequentially in the order they were received by CREAM.

3.4. Lease Manager
When job submissions arrive through the gLiteWMS, it is essential that all jobs submitted
to CREAM eventually reach a terminal state (and thus get eventually purged from the CREAM
server). The gLite WMS has been augmented with an additional component, Interface to Cream
Environment (ICE), which is responsible for directly interacting with CREAM. ICE and CREAM
use a lease-based approach to ensure that all jobs get purged by CREAM even if it loses contact
with the ICE client, e.g. due to network partitioning. Basically, each job submitted through ICE
has an associated lease time, which must be periodically renewed using an appropriate JobLease
CREAM method. ICE is responsible for periodically renewing all leases which are about to
expire. Should a job lease expire before the actual termination of a job, the Lease Manager
thread will purge it and free all the CE resources used by that job.

3.5. LRMS connectors
As already introduced, CREAM can be seen as an abstraction layer on top of a LRMS (batch
system), which extends the LRMS capabilities with an additional level of security, reliability,
and integration with a Grid infrastructure. CREAM supports different batch systems through
the idea of LRMS connectors. A LRMS connector is an interface for a generic batch system.
Currently, CREAM supports all the batch systems supported by BLAH [10] through a specific
instance of LRMS connector called BLAH connector module: at the time of writing BLAH
supports LSF, PBS, and Condor. Of course, it is also possible to create other, ad-hoc connectors
to interact with other types of batch systems.

3.6. Security
The Grid is a large collaboration and resource sharing environment. Users and services cross
the boundaries of their respective organizations and then resources can be accessed by entities
belonging to several different institutions. In such a scenario, security issues are of particular
relevance. There exists a wide range of authentication and authorization mechanisms, but Grid
security requires some extra features: access policies are defined both at the level of VOs and at
the level of single resource owners. Both these aspects must be taken into account. Moreover,
as we will see in the next sections, Grid services have to face the problem of dealing with the
delegation of certificates and the mapping of Grid credential into local batch system credentials.



Trust Manager The Trust Manager is the component responsible for carrying out
authentication operations. It is external to CREAM, and is an implementation of the J2EE
security specifications.

Authentication in CREAM is based on a Public Key Infrastructure (PKI). Each user (and
Grid service) willing to access CREAM is required to present an X.509 format certificate [11].
These certificates are issued by trusted entities, the Certificate Authorities (CA). The role of a
CA is to guarantee the identity of a user. This is achieved by issuing an electronic document
(the certificate) that contains the user main data and is digitally signed by the CA with its
private key. An authentication manager, such as the Trust Manager, can verify the user identity
by decrypting the certificate with the CA public key. This ensures that the certificate was
released by that specific CA. The Trust Manager can then access the user data contained in the
certificate and verify the user identity.

One interesting challenge in a Grid environment is the so-called proxy delegation. It may be
necessary for a job running on a CE, to perform some operations on behalf of the user owning
the job. Those operations might require proper authentication and authorization support. For
example, we may consider the case where a job running on a CE has to access a Storage
Element (SE) to retrieve or upload some data. This aim is achieved in the Trust Manager using
proxy certificates. Proxy certificates are an extension of X.509 certificate, using RFC3820 proxy-
certificates [12]. The generation of a proxy certificate is as follows. If a user wants to delegate
her credential to CREAM, she has to contact the delegation portType of the service. CREAM
creates a public-private key pair and use it to generate a Certificate Sign Request (CSR). This
a certificate that has to be signed by the user with her private key. The signed certificate is sent
back to CREAM. This procedure is similar to the generation of a valid certificate by a CA and, in
fact, in this context the user acts as a CA. The certificate generated so far is then combined with
the user certificate, thus forming a chain of certificates. The service that examines the proxy
certificate can then verify the identity of the user that delegated its credentials by unfolding
this chain of certificates. Every certificate in the chain is used to verify the authenticity of the
certificate at the previous level in the chain. At the last step, a CA certificate states the identity
of the user that first issues the delegated proxy.

Authorization Framework The aim of the authorization process is to check whether an
authenticated user has the rights to access services and resources and to perform certain tasks.
The decision is taken on the basis of polices that can be either local or decided at the VO level.
Administrators need a tool that allows them to easily configure the authorization system in order
to combine and integrate both these policies. For this reason, CREAM adopts a framework that
provides a light-weight, configurable, and easily deployable policy-engine-chaining infrastructure
for enforcing, retrieving, evaluating and combining policies locally at the individual resource
sites.

The framework provides a way to invoke a chain of policy engines and get a decision result
about the authorization of a user. The policy engines are divided in two types, depending on
their functionality. They can be plugged into the framework in order to form a chain of policy
engines at the administrator choice in order to let him set up a complete authorization system. A
policy engine may be either a Policy Information Point (PIP) or a Policy Decision Point (PDP).
PIPs collect and verify assertions and capabilities associated with the user, checking his role,
group and VO attributes. PDPs may use the information retrieved by a PIP to decide whether
the user is allowed to perform the requested action, whether further evaluation is needed, or
whether the evaluation should be interrupted and the user denied access.

In CREAM both VO and ”ban/allow” based authorizations are supported. In the former
scenario, implemented via the VOMS PDP, the administrator can specify authorization policies
based on the VOs the jobs’ owners belong to (or on particular VO attributes). In the latter case



the administrator of the CREAM based CE can explicitly list all the Grid users (identified by
their X.509 Distinguished Names) authorized to access CREAM services.

For what concerns authorization on job operations, by default each user can manage (e.g.
cancel, suspend, etc.) only her jobs. However the CREAM administrator can define specific
”super-users” who are empowered to manage also jobs submitted by other users.

Credential Mapping The execution of user jobs in a Grid environment requires isolation
mechanisms for both applications (to protect these applications from each other) and resource
owners (to control the behavior of these arbitrary applications). Waiting for the development of
solutions based on the virtualization of resources (VM), CREAM implements isolation via local
credential mapping, exploiting traditional Unix-level security mechanisms like a separate user
account per Grid user or per job. This Unix domain isolation is implemented in the form of the
glexec system, a sudo-style program which allows executing the user’s job with local credential
derived from the user’s identity and any accompanying authorization assertions. This relation
between the Grid credentials and the local Unix accounts and groups is determined by the Local
Credential MAPping Service (LCMAPS) [13]. glexec also uses the Local Centre Authorization
Service (LCAS) [14] to verify the user proxy, to check if the user has the proper authorization
to use the glexec service, and to check if the target executable has been properly ”enabled” by
the resource owner.

4. WMS integration
Users can interact directly with the CREAM services by means of a set of command line utilities
which can be used to manage jobs by directly invoking CREAM operations. These command
line tools are written in C++ using the gSOAP library [15].

CREAM functionality can also be used by the gLite WMS Grid component [16]. This
means that jobs submitted to the gLite WMS can be forwarded for their execution on CREAM
based CEs.

The WMS comprises a set of Grid middleware components responsible for the distribution
and management of tasks across Grid resources, in such a way that applications are conveniently,
efficiently and effectively executed.

The CREAM–WMS integration is realized with a separate module, called ICE. ICE receives
job submissions and other job management requests from the WMS component; it then uses the
appropriate CREAM methods to perform the requested operation. Moreover, ICE is responsible
for monitoring the state of submitted jobs and for taking the appropriate actions when the
relevant job status changes are detected (i.e. the trigger of a possible resubmission if a Grid
failure is detected).

Fig. 3 shows a schematic view of CREAM integration with the gLite WMS. gLite users submit
jobs through the gLite UI, which transfers jobs to a WMS, which then dispatches the request to
the local ICE component. ICE interacts with CREAM via the legacy Web Service interface. Of
course, users may also interact with CREAM directly (i.e., bypassing the gLite layer), by using
the CREAM command line tools. Of course, in both cases the users must have a valid VOMS
proxy credential. Other clients can also access the BES interface to CREAM.

ICE obtains the state of a job in two different ways. The first one is by subscribing to a job
status change notification service implemented by a separate component called CEMON (see
Fig. 1). CEMON [6] is a general-purpose event notification framework. CREAM notifies the
CEMON component about job state changes by using the shared, persistent CREAM backend.
ICE subscribes to CEMON notifications, so it receives all status changes whenever they occur.
As a fallback mechanism, ICE can explicitly query the CREAM service to check the status of
”active” jobs for which it did not receive any notification for a configurable period of time. This
mechanism guarantees that ICE knows the state of jobs (possibly with a coarse granularity)



BES Client

CREAM
Server

Firewall

Tomcat

Client-Side LRMS

CREAM

BES 
Interface

AXIS

Worker Node

Server-Side LRMS

Job Job

Legacy WS 
Interface

gLite WMS

Workload
Manager

ICE

gLite
User Interface

Trust Manager

CREAM CLI /
other clients

Figure 3. Integration of CREAM
within the gLite WMS infrastruc-
ture; the BES interface is currently
used by stand-alone BES clients.

even if the CEMON service becomes unavailable. Job status change informations are sent to
the Logging and Bookkeeping (LB) [17] service, a distributed job tracking service.

5. Performance tests
We evaluated the performance of the CREAM service in term of throughput (number of
submitted jobs/s), comparing CREAM with the CEs currently used in the gLite infrastructure.
The CEs which have been tested are CREAM, the LCG-CE and the gLite-CE. We measured
the throughput for the submission of 1000 identical jobs to an idle CE, using an otherwise
identical infrastructure. All 1000 jobs were inserted into the input queue of the WMS component
responsible for submitting jobs to the CE–that is, the input queue of ICE for the CREAM CE,
and the JobController/LogMonitor (JC+LM) input queue for the gLite-CE and LGC-CE. When
the input queue was full, ICE (or JC+LM) were switched on to start the submission to the CE.
The following JDL was submitted in all tests:

Executable = "test.sh";
StdOutput = "std.out";;
InputSandbox = {"gsiftp://grid005.pd.infn.it/Preview/test.sh"}
OutputSandbox = "out.out";
OutputSandboxDestURI = {"gsiftp://grid005.pd.infn.it/Preview/Output/std.out"};
ShallowRetryCount = 0;
RetryCount = 0;



with test.sh being:

#!/bin/sh
echo "I am running on ‘hostname‘"
echo "I am running as ‘whoami‘"
sleep 600

Those jobs had the ISB (the executable) downloaded from a GridFTP server, and had the
output (the stdout, where the hostname where the execution took place and where the local
user are reported) uploaded on a GridFTP server as well. Each job did a sleep for 10 minutes.
Deep and shallow resubmission were disabled.

The following measures were taken:

(i) The number of successful jobs, that is, the number of jobs which successfully completed their
execution (we recorded the reported failure reasons for all failed jobs); this is an Higher is
Better (HB) metric.

(ii) Throughput to the CE. This is a HB metric, which denotes the number of jobs/minute
which are received by the CE;

(iii) Throughput to the LRMS. This is a HB metric, which denotes the number of jobs/minute
which are received by the LRMS.

In the case of submissions to CREAM using ICE, the test was repeated considering different
values for the number of submitting threads in ICE. The results are given in Table 1. Note that
since in the JC+Condor+LM scenario it is not straightforward to distinguish between submission
to the CE vs submission to the LRMS, it was not possible to measure the submission rate to
the CE as done for the ICE case.

Table 1. Performance results

Successful jobs Throughput
for CE submis-
sion (jobs/60s)

Throughput
for LRMS sub-
mission (jobs/60s)

ICE/CREAM, 5 threads 999/1000 37.36 37.29
ICE/CREAM, 10 threads 994/1000 37.56 37.48
ICE/CREAM, 15 threads 995/1000 37.34 37.22
ICE/CREAM, 20 threads 994/1000 36.45 36.39
ICE/CREAM, 25 threads 994/1000 38.83 38.73
LGC-CE 1000/1000 N/A 13.52
gLite-CE 940/1000 N/A 2.38

We should note that the JC+Condor+LM to gLite-CE tests revealed a problem in Condor
so that it only could handle 100 jobs, even if the maximum value was correctly set to 1000 in
Condor’s configuration file. At the time the tests were performed, a fix for this bug was not
available yet. This partly explains the lower submission rates for the LGC-CE and gLite-CE.

6. Conclusions
In this paper we described the general architecture of CREAM, a Java-based Grid CE service.
CREAM uses a Web Service interface to provide features an interface based on Web Services,
a lightweight implementation and a rich set of features. It is being integrated with the Grid



infrastructure, in particular with the WMS subsystem, by means of a glue component called ICE.
Moreover, CREAM is being extended with a BES/Job Submission Description Language (JSDL)
compliant interface

More detailed informations, including installation instructions, interface specification and
usage manual for CREAM can be found at the Web page [18].

7. Acknowledgments
EGEE is a project funded by the European Union under contract INFSO-RI-508833. The OMII-
Europe project is funded by the European Union under contract number INFSO-RI-031844. We
also acknowledge the national funding agencies participating in EGEE and/or OMII for their
support of this work.

References
[1] Apache software foundation. jakarta tomcat servlet container http://tomcat.apache.org/

[2] Burke S, Campana S, Peris A D, Donno F, Lorenzo P M, Santinelli R and Sciabà A 2007 gLite 3 user
guide–Manuals Series Version 1.1, Document identifier CERN-LCG-GDEIS-722398. Available online at
https://edms.cern.ch/document/722398/1.1

[3] Sgaravatto M 2005 CREAM Job Description Language Attributes Specification for the EGEE Middleware
document Identifier EGEE-JRA1-TEC-592336, Available online at https://edms.cern.ch/document/

592336

[4] Raman R 2001 Matchmaking Frameworks for Distributed Resource Management Ph.D. thesis
[5] Apache software foundation. axis SOAP container http://ws.apache.org/axis/

[6] CEMon home page http://grid.pd.infn.it/cemon

[7] Foster I et al. 2007 OGSA basic execution service, version 1.0 available at http://www.ogf.org/documents/
GFD.108.pdf

[8] Anjomshoaa A et al. 2007 Job submission description language (JSDL) specification, version 1.0 available at
http://www.ogf.org/documents/GFD.56.pdf

[9] Java naming and directory interface (JNDI) http://java.sun.com/products/jndi/

[10] Molinari E et al. 2006 Proc. XV International Conference on Computing in High Energy and Nuclear Physics
(CHEP’06) (Mumbay, India)

[11] Housley R et al. RFC3280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile http://www.ietf.org/rfc/rfc3280.txt

[12] Tuecke S Rfc3820: Internet x.509 public key infrastructure (pki) proxy certificate profile http://www.ietf.

org/rfc/rfc3820.txt

[13] http://www.nikhef.nl/grid/lcaslcmaps/lcmaps.shtml

[14] Site authorisation and enforcement services: LCAS and LCMAPS http://www.nikhef.nl/grid/

lcaslcmaps/

[15] van Engelen R gSOAP 2.7.6 user guide 29 Dec. 2005
[16] Andreetto P et al. 2004 Proceedings of CHEP’04 (Interlaken, Switzerland)
[17] Kour̆il D et al. 2004 Proceedings of CHEP’04 (Interlaken, Switzerland)
[18] CREAM home page http://grid.pd.infn.it/cream


