
Status and Developments of the CREAM Computing

Element Service

P Andreetto1, S Bertocco1, F Capannini2, M Cecchi2, A Dorigo1,

E Frizziero1, A Gianelle1, F Giacomini2, M Mezzadri3, S Monforte4,

F Prelz3, E Molinari3, D Rebatto3, M Sgaravatto1, L Zangrando1

1 INFN Padova, Via Marzolo 8, I-35131 Padova, Italy
2 INFN-CNAF, Viale Berti Pichat 6/2, I-40127 Bologna Italy
3 INFN Milano, Via Celoria 16, I-20133 Milano, Italy
4 INFN Catania, Via Santa Sofia 64, I-95123, Italy

Abstract. The CREAM CE implements a Grid job management service available to end users
and to other higher level Grid job submission services. It allows the submission, management
and monitoring of computational jobs to local resource management systems. CREAM, which
is part of the gLite Grid middleware, is available in the EGEE production Grid where it is
used by several user communities in different job submission scenarios. In this paper, after a
quick description of the CREAM CE architecture and functionality, we report on the status of
this Grid service, focusing on the results, feedback and issues that had to be addressed. We
also discuss about its integration with other job submission services, in particular the gLite
Workload Management System. The planned future activities, concerning the maintenance and
evolution of the CREAM CE, are reported as well.

1. Introduction

In Grid terminology, a Computing Element (CE) is the interface to a large farm of computing
hosts managed by a Local Resource Management System (LRMS), such as Condor, LSF or
Torque. A CE provides additional features to those of the underlying batch system, such as
Grid-enabled user authentication and authorization, accounting, fault tolerance and improved
performance and reliability.

The Computing Resource Execution and Management (CREAM) service is the CE
implementation in the gLite [7] Grid middleware. CREAM is the job management component
that can be used to submit, cancel, and monitor jobs for execution on suitable computational
resources. It exposes an interface based on Web Services, which enables a high degree of
interoperability with clients written in different programming languages.

CREAM is currently deployed in several production Grids on a national, European and
international level, and it is used in a wide variety of application scenarios, such as astrophysics,
biomedicine, computational chemistry, earth sciences, high energy physics, finance, fusion,
geophysics, multimedia, etc.

In this paper we first of all briefly describe the functionality of CREAM. We then discuss how
it is integrated with higher level job management components. After having summarized some
recent new developments, we then report about the usage of CREAM by the Worldwide LHC



Computing Grid (WLCG) user community. Finally we report about some new functionality and
developments foreseen for the future.

2. The CREAM service

CREAM is a job submission service: users can submit jobs, described via a classad-based Job
Description Language (JDL) expression [12], to CREAM CEs. The JDL is a high-level
notation based on Condor classified advertisements (classads) [10] for describing jobs and their
requirements. CREAM supports the execution of batch (normal) and parallel (MPI) jobs.
Normal jobs are single or multi-threaded applications requiring one CPU to be executed; MPI
jobs are parallel applications which usually require a larger number of CPUs to be executed,
and which make use of the MPI library for interprocess communication. CREAM is a Java
application which runs as an Axis servlet inside the Tomcat application server.

The CREAM interface exposes a set of operations which can be classified in three groups
(see [1] for details). The first group of operations (Lease Management) allows the user to define
and manage leases associated with jobs. The lease mechanism has been implemented to ensure
that all jobs get eventually managed, even if the CREAM service loses connection with the
client application due to network partitioning. Each lease defines a time interval, and can be
associated with a set of jobs. A lease can be renewed before its expiration; if a lease expires, all
jobs associated with it are terminated and purged by CREAM.

The second group of operations (Job Management) is related with the core functionality
of CREAM as a job management service. Operations are provided to create a new job, start
execution of a job, suspend/resume or terminate a job. Moreover, the user can get the list of
all owned jobs, and it is also possible to get the status of a set of jobs.

Finally, the third group of operations (Service Management) deals with the whole CREAM
service. It consists of two operations, one for enabling/disabling new job submissions, and one for
accessing general information about the service itself. Note that only users with administration
privileges are allowed to enable/disable job submissions.

CREAM submits requests to the LRMS through Batch-system Local ASCII Helper
(BLAH) [9], an abstraction layer providing a unified interface to the underlying LRMS. CREAM
supports all the batch systems supported by BLAH which at the time of writing are LSF,
PBS/Torque, Condor, SGE and BQS. CREAM relies on BLAH also for receiving status change
notifications from the LRMS.

3. Integrating CREAM with other job management services

Users can interact directly with the CREAM service by means of a set of command line utilities
which can be used to manage jobs by directly invoking CREAM operations. These command
line tools are written in C++ using the gSOAP library [13].

CREAM can also be used through higher level job management services, such as the
gLite Workload Management System (WMS) component [3] and Condor-G [8].

The WMS comprises a set of Grid middleware components responsible for the distribution
and management of tasks across Grid resources, in such a way that applications are conveniently,
efficiently and effectively executed.

The CREAM–WMS integration is realized with a specific module, called Interface to Cream
Environment (ICE). ICE receives job submissions and other job management requests from
the Workload Manager (WM) component of the WMS; it then uses the appropriate CREAM
methods to perform the requested operations. Moreover, ICE is responsible for monitoring the
state of submitted jobs and for taking the appropriate actions when the relevant job status
changes are detected (e.g. the trigger of a possible resubmission if a Grid failure is detected).



Fig. 1 shows a schematic view of CREAM integration with the kite WMS. Users can submit
jobs through the gLite User Interface (UI), which transfers jobs to a WMS. Then the ICE
component of the WMS interacts with CREAM via the legacy Web Service interface. Of course,
users may also interact with CREAM directly (i.e. bypassing the gLite WMS), by using
the CREAM command line tools.

gLite UI host

gLite WMS host

CREAM host

LB Server host

WMS UI

LB

CREAM

WMS

WMWMProxy

ICE

CREAM CLI

LGC CE Host

LGC CE

JC+LM+CondorG

0..* 1..*

1..*

0..* 1..*

Figure 1. Job submission chain (simplified) in the gLite middleware. The JobCon-
troller+CondorG+LogMonitor (JC+CondorG+LM) component is used for job submission to
the legacy LCG-CE.

Condor-G is another higher level job management component. It can manage thousands
of jobs destined to run at distributed sites. It provides job monitoring, logging, notification,
policy enforcement, fault tolerance, credential management, and it can handle complex job-
interdependencies.

Condor-G added functional support for CREAM in version 7.3.2, but important fixes and
enhancements were introduced with version 7.5.3.

4. Recent developments

At time of writing, the latest available version of the CREAM CE is 1.6.3. Version 1.6 introduced
several enhancements.

The first one is an improvement of job status changes detection by the ICE component of
the WMS. In the previous versions, ICE obtained the state of a job in two different ways.
The first one was by subscribing to a job status change notification service implemented by
CEMonitor [2] (CREAM notified CEMonitor component about job state changes by using the
shared, persistent CREAM backend; ICE subscribed to CEMonitor notifications, so it received
all status changes whenever they occur). As a fallback mechanism, ICE could explicitly query
the CREAM service to check the status of “active” jobs for which it did not receive any
notification for a configurable period of time.

This mechanism proved to be not scalable: in scenarios of a WMS submitting many jobs to
several CREAM CEs, big delays in detecting job status changes were observed. This problem
was addressed introducing a new operation, called QueryEvent which basically just return status
changes for jobs submitted by a certain user. This operation is now used by the ICE component:
instead of using the CEMon notifications and/or explicitly polls to get the status for all “active”



jobs, ICE simply queries the relevant CREAM CEs (the ones where it submitted jobs) to get
just the job status changes, which is the only needed information.

Another improvement introduced with CREAM CE 1.6 concerns credential mapping. In
previous releases, all operations to be done by the local account mapped to the relevant Grid
user (job sandbox directory creation, submission to the batch system, etc.) were managed by
glexec [6]. Each invocation of glexec results in an authorization decisions (a full LCAS/LCMAPS
evaluation) which is not really needed and can contribute in degrading performance. After having
discussed the issue in the context of the Middleware Security Group (MWSG) and Security
Coordination Group (SCG) [11], it was decided to use sudo for such operations to be done on
behalf of the local user, using the local id returned by glexec (which in this model is therefore
used just once per job submission). This was implemented in CREAM v. 1.6

An other important change introduced in CREAM CE v. 1.6 concerns the BLAH component.
In the previous implementations, BLAH parsed the LRMS log files to detect status changes. In
the new implementation it is also possible to configure BLAH to poll the LRMS (therefore using
the status/history batch system commands) instead of parsing the LRMS log files. Both models
are currently supported (the site administrator can choose the preferred model at configuration
time).

5. Deployment and usage of CREAM in the Worldwide LHC Computing Grid

The first version of the CREAM computing service was released in production in the WLCG
production Grid on October 2008. At the time of writing there are about 160 instances of
CREAM in such Grid infrastructure, and the number of installations keeps increasing.

The rest of this section summarizes the experience with CREAM by the LHC experiments.

ALICE was the first LHC experiment trying and then using CREAM for production activities
(the first tests were done even before the first official release of CREAM).

CREAM is now deployed in all Alice T1 and T2 sites, where it is used to run job agents.
These agents, which are submitted directly to CREAM resources using the CREAM CLI (i.e.
not relying on higher level tools such as the WMS or CondorG) are then responsible to retrieve
from a central queue and eventually run analysis/reconstruction/simulation jobs suitable for the
considered site.

Alice is still using LCG-CEs only at Cern, just because at Cern currently only 3 CREAM
CEs installations are available vs about 20 LCG-CE instances.

Alice is reporting very good results with CREAM for what concerns deployment and
operations.

The ATLAS computing model is also based on pilot jobs. In most of ATLAS sites, pilot jobs
are submitted using CondorG.

The submission of pilot jobs to CREAM resources from CondorG was tested by ATLAS at
the beginning of 2010. In these tests two major problems (one related to lease renewal and one
related to the management of the sandbox files) were observed. In July 2010 a new version
of Condor (v. 7.5.3) addressing these problems was released. Since that ATLAS is currently
performing new tests: results so far look promising.

CMS software frameworks for production and analysis can refer to the gLite WMS or
glideinWMS [14] for what concerns job submission.

In October and November 2009, CMS performed a test campaign in its T1 sites to test
submission to CREAM through the WMS for productions. The outcome of these tests was that
the inefficiencies due to CREAM were negligible. CMS therefore decided to use also CREAM



CEs for their activities. A bug in the ICE component of the WMS was then found: the problem
was that in some cases jobs could be reported in a non final state even if finished. This problem
was then fixed with WMS 3.2.14. Since that, no other particular issues concerning CREAM
were reported by the CMS community.

For what concerns the submission to CREAM using glideinWMS (which refers to the
submission to CREAM from Condor) this is still to be finalized. Some tests were already
done, but referring to an old Condor implementation, affected by the same problems observed
in the tests done by Atlas.

LHCB is also referring to a pilot based approach. In this case, however, pilots are submitted
using the WMS. Since January 2010, about 40 % of pilots submitted by LHCB run on CREAM
based resources.

LHCB is going to move towards direct submission model, submitting the jobs directly to the
CREAM CE using the CREAM CLI (i.e. without using the WMS). A proof of concept Dirac
agent referring to this model is already in place at INFN CNAF.

6. Future work

One of the new functionality foreseen for the CREAM service is the integration with the Argus
authorization service [4]. In such scenario, Argus will be the only component used to manage
authorization and defining the mapping between Grid and local users in the CREAM CE. In
this way inconsistent authorization decisions could not happen anymore. Moreover this will help
reducing the dependency footprint in the CREAM CE since glexec (which in turns depends on
LCAS and LCMAPS) won’t be needed anymore.

Another foreseen new development is the integration between CREAM and the Logging and
Bookkeeping (LB) service [15]. In this way gLite users will be able to track jobs submitted
to CREAM from any client (through the gLite WMS, directly using the CREAM CLI, etc.).
This will also allow the integration between CREAM and higher level monitoring tools (e.g.
dashboard systems), already integrated with LB.

7. Conclusions

In this paper we described the status and new developments for the CREAM service, a Java-
based Grid CE service, which can be used directly by the end-user or can be integrated in higher
level job management tools, such as the gLite WMS and Condor-G.

More detailed information, including installation instructions, interface specification and
usage manuals for CREAM can be found on the Web page [5].

8. Acknowledgments

The research results of the EMI project are co-funded by the European Commission under the
FP7 Collaborative Projects Grant Agreement Nr. 261611

References
[1] C. Aiftimiei et al, Design and Implementation of the gLite CREAM Job Management Service,

Future Generation Computer Systems, Volume 26, Issue 4, April 2010, pp. 654-667, doi:
10.1016/j.future.2009.12.006.

[2] C. Aiftimiei et al, Using CREAM and CEMON for job submission and management in the gLite middleware,
Proc. of CHEP’09 conference, Prague, Czech Republic, March 21 - 27 2009.

[3] P. Andreetto et al, Practical approaches to grid workload and resource management in the EGEE project,
Proc. of CHEP’04 conference, Interlaken, Switzerland, Sept 27 - Oct 1 2004.

[4] Argus home page, https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
[5] CREAM home page, http://grid.pd.infn.it/cream
[6] GLExec home page, https://www.nikhef.nl/pub/projects/grid/gridwiki/index.php/GLExec



[7] gLite home page, http://www.glite.org
[8] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-G: A Computation Management Agent for

Mulled-Institutional Grids Proc. of of HPDC 2001.
[9] E. Molinari et al A local batch system abstraction layer for global use, Proc. of XV International Conference

on Computing in High Energy and Nuclear Physics (CHEP’06), Feb 13–17 2006, Mumbay, India.
[10] R. Raman, Matchmaking Frameworks for Distributed Resource Management, Ph.D. thesis, University of

Wisconsin-Madison, 2001.
[11] Security Coordination Group home page, http://egee-scg.web.cern.ch/egee-scg
[12] M. Sgaravatto CREAM Job Description Language Attributes Specification for the EGEE Middleware

Document Identifier EGEE-JRA1-TEC-592336, Available online at https://edms.cern.ch/document/

592336.
[13] R. van Engelen, gSOAP 2.7.6 User Guide’, 29 Dec. 2005.
[14] I. Sfiligoi, D. C. Bradley, B. Holtzman, P. Mhashilkar, S. Padhi and F. Wuerthwein, The Pilot

Way to Grid Resources Using glideinWMS, Proceedings of Computer Science and Information
Engineering, 2009 WRI World Congress on, pp. 428-432, March 2009, ISBN: 978-0-7695-3507-4,
http://dx.doi.org/10.1109/CSIE.2009.950

[15] The Logging and Bookkeeping Subsystem, http://egee.cesnet.cz/cs/JRA1/LB


