
A PRACTICAL APPROACH FOR A
WORKFLOW MANAGEMENT SYSTEM

Simone Pellegrini, Francesco Giacomini, Antonia Ghiselli
INFN Cnaf
Viale Berti Pichat, 6/2 - 40127 Bologna, Italy
simone.pellegrini@cnaf.infn.it

francesco.giacomini@cnaf.infn.it

antonia.ghiselli@cnaf.infn.it

Abstract A variety of grid middlewares and workflow languages causes the existence of
many workflow management systems (WfMS). Formalisms used to represent
workflows vary from simple Directed Acyclic Graphs (DAG) to more com-
plex (non deterministic) Petri Nets. Therefore a workflow description is strictly
bound to a particular WfMS and to the computational resources that WfMS ad-
dress, as far as no cooperation among WfMSs exists. This might be critical in
scientific workflows where a large amount of resources is usually needed. In this
paper we propose a WfMS that aims at language independence and Grid mid-
dleware abstraction dealing with interoperability as proposed in the reference
model of the Workflow Management Coalition (WfMC). The main goal of such
WfMS is to provide an effective solution to run complex scientific workflows
(legacy or not) taking full advantage of the distributed and etherogeneous nature
of the Grid. A Petri Net formalism has been chosen as internal representation due
to its formal behavioral description and the existence of several analysis tools.
Our proposed WfMS will be implemented on top of the gLite Grid middleware
provided by the EGEE project because of its stability and large adoption.

Keywords: workflow management, grid computing, interoperability, Petri Net, EGEE/gLite

1. Introduction
The evolution of the Grid towards a service-oriented architecture enables

scientists to build complex applications as workflows. WfMSs allow the com-
position and execution of such distributed applications at a high abstraction
level; a workflow language, usually graph based, is used to specify depen-
dencies (control and data flow) between tasks. Several WfMSs exist both in
scientific and in business environments. This underlines the research interest
in this field.



2

Unlike business WfMSs, scientific ones lack a recognized standard; as a
consequence several workflow languages exist. Apart from the syntax, these
languages differ for the formalism used to express the workflow model. Most
of the graphical workflow languages are based on DAGs where the control flow
can be described in terms of sequence, parallelism and choice. More power-
ful than DAGs, formalisms such as Petri Nets and π-Calculus allow to define
iteration (also know as loop or cycle). As a consequence of that variety of lan-
guages and formalisms, WfMSs are incompatible. Furthermore a WfMS usu-
ally address a small set of computational resources and without interoperability
scientific workflows cannot fully take advantage from the distributed, hetero-
geneous nature of the Grid. The Workflow Management Coalition (WfMC)
encourages WfMSs standardization in its reference model which defines a set
of APIs (called WAPI) and interfaces numbered from 1 to 5 in order to achieve
interoperability. In particular, interface 4 describes different levels of work-
flow coordination/cooperation. Unfortunately the WfMC has so far failed its
standardization scope and no WfMS formally follows its reference model.

In this paper we propose a generic WfMS architecture that abstracts from
the underlying grid middleware and deals with workflow interoperability. As
we will see in detail, the definition of a grid abstraction layer makes it possible
to build a middleware-independent workflow engine. A Petri Net formalism
is used as the internal representation due to its formal semantics. Petri Nets
capture both the control and data flow of the workflow, they formally describe
its state evolution and they are Turing-complete. Workflow interoperability is
addressed using language translators and model converters.

The implementation of our WfMS will rely on the gLite Grid middleware.
gLite exposes several Grid services with a good level of reliability and the
amount of managed resources allows users to execute complex and large work-
flows. The Job Description Language (JDL) is the lingua-franca of the gLite
middleware, it is used for job and also workflow (expressed as DAGs) de-
scriptions. DAGs are executed by Condor DAGMan [1]which provides a basic
support for workflow management. In fact, DAGMan practically lacks failure
recovery and that limits expressiveness in workflow design. With this work
we want to improve workflow support in gLite allowing users to keep all the
advantages of using a full feature WfMS.

In Sect. 2 we will go along describing in details at the engine architecture,
defining the layers and how they interact. In Sect. 3 we will focus on the
interoperability problem and in Sect. 4 we will show some details related to
the implementation of such WfMS, concluding with the description of how we
intend to progress with this work in the future in Sect. 5.



A Practical Approach for a Workflow Management System 3

Figure 1. The WfMS Architecture, interfaces A and B will be explained in more detail in Sect.
4.

2. Workflow Architecture Overview
In this section we propose a generic WfMS architecture that aims at Grid

middleware independence, as proposed in [2], and at multi-language support.
The use of a layered architecture makes it possible to abstract both from a par-
ticular Grid infrastructure and a workflow language in order to provide porta-
bility and multi-language compatibility.

An outline of such architecture is shown in Fig. 1. At the bottom lies the
basic Grid infrastructure: a collection of computational and storage resources.
These resources are transparent to users thanks to a so called Grid middleware
which acts as a mediator that provides a consistent and homogeneous access to
them.

Since multiple Grid infrastructures still exist, a Grid Abstraction Layer is
introduced in order to abstract high level Grid functionalities such as job sub-
mission, data transfer, job state observation and resource reservation. This
makes it possible to decouple the workflow engine from the underlying grid



4

architecture allowing workflows to use a large set of Grid infrastructures and
therefore resources.

The workflow engine is the main component of the WfMS; it basically sub-
mits tasks to the Grid taking care of their dependencies and the overall work-
flow execution. The engine we are going to propose in this paper executes
workflows represented in term of Petri Nets. Petri Nets have been chosen as
internal model because of their formal semantics. The structure of a Petri-
Net-model is formally defined by a set of places, a set of transitions and a set
of arcs connecting places to transitions and vice versa (but not place to place
or transition to transition). The High Level Petri Nets (HLPN) model extends
classical Petri Nets with features that make them more suitable for workflow
representation; an introduction to theoretical aspects of HLPN can be found
in [3](in our paper we always refer to HLPN when the Petri Net term is used).
The dynamic behavior of the net is described by using tokens which are associ-
ated to places; tokens enable transitions, make them fire and as a consequence
they flow through the network. From a workflow perspective, a transition is
associated to a task execution (job submission) and a token represents data that
flows between tasks. An outline of a Petri-Net-based workflow engine can be
described using the state chart diagram shown in Fig. 2. The engine needs to
select enabled transitions, submits relative tasks to the Grid and monitors their
execution; when a task ends the net state is updated, data (tokens) are moved
and new transitions are selected to fire. The workflow execution continues un-
til all the submitted jobs terminate and there is no further enabled transition.
Unlike a formal Petri Net model, where transitions are atomic operations, we
have also to deal with a transition failure (referred to a task failure). In sci-
entific workflow, tasks are tipically operations which take raw data in input
and produce refined data as output. As far as tasks are usually idempotent, the
common failure recovery strategy (which is also used by DAGMan) consists
in a task re-submission. However, in ordert to achieve at business workflows
compatibility, we have to deal with different failure recovery strategies (i.e.
rollback, choose an alternative task). This is made possible by pushing out of
the engine the failure management: when a failure is recognized, it is handled
by the workflow itself as shown in Fig. 2. Failure management could be ex-
plicity done by the user during the process design; or as a result of a workflow
refinement discussed in [4].

The top layer aims at language independence. The basic idea is to make
the workflow engine compatible with a large set of workflow languages. A
pluggable system of parsers provides support for several languages in order to
allow collaboration between WfMSs and support for legacy workflows. As
we will see in more detail in the next section this layer has the responsibility
to extrapolate the semantics behind a workflow description and translate it in



A Practical Approach for a Workflow Management System 5

Figure 2. The Workflow engine behavior

terms of a Petri Net. On the other side the gateway makes it possible to transfer
parts of a process to a different WfMS.

Our interest is to build such WfMS in term of a micro-kernel pattern as
proposed in [5]. A micro-kernel pattern [6]aims at the separation of a minimal
functional core such as job submission, monitoring and data movement from
extended functionality providing extensibility. That means advanced workflow
features such as planning, scheduling strategies and QoS management should
be built on top of the kernel API. A micro-kernel pattern provides modularity
and extensibility which are fundamental properties for systems like a WfMS,
where a standard is not well defined yet and they must be able to adapt easily
to changing requirements.

3. Workflow Interoperability
As shown in Fig. 1 there are two kinds of interaction we would like to

investigate: the first one (A) is about translation between different workflow
description languages; the second one (B) is about synchronization between
different workflow engines. Both aspects are part of the interoperability inter-
face described in the WfMC’s reference model [7].

As previously said many workflow languages exist due to the lack of a
strong standard. However, translation from one language to another is of-
ten possible; what is needed is a language parser, a model translator and a
compiler, as shown in the top layer of Fig. 1. Parsers have the responsibility to



6

extract the workflow semantics from a description, expressed using a workflow
language. As explained before, workflows can be described in terms of DAGs,
Petri Nets, π-Calculus or Activity Diagrams, albeit with different expressivity
levels (e.g. a DAG cannot describes an iteration of tasks). Conversion between
these formalisms is provided by the model converter which represents the crit-
ical part of such process. In fact is not always possible to rapresent one model
in terms of a different one; for example a Petri Net cannot always be converted
in term of a DAG. Finally compilers translate the model into a specific (usually
different from the initial) language description.

A debate exists around the best formalism to use for workflow description;
Petri Nets and π-Calculus are widely used for workflow modeling. As far as
both the formalisms are Turing-complete, the choice relies on the way these
models deal with workflow patterns. Workflow patterns are a collection of
well-known problems, and solutions, related to the support of process-oriented
applications [8]. According to [9], Petri Nets outperform other formalisms in
workflow description thanks to their formal semantics; also several analysis
techniques exist in order to determine the properties (correctness, deadlocks
and boundary) of a process design. As previously said, Petri Nets provide
mechanisms for model conversion. DAGs can be simply represented in terms
of Petri Nets; also π-Calculus based models (such as BPEL) can be trans-
lated in terms of Petri Nets; the semantics of such translation is discussed in
[11]. This choice is also compatible with the one done by other CoreGRID
partners like the Fraunhofer FIRST which introduced an XML based language
called GWorkflowDL [10]that allows the representation of abstract and con-
crete workflows using Petri Nets. Fraunhofer FIRST also works, since several
years, on a workflow enactment engine called GWES in which we would like
to contribute with our work.

Compilers come into stage when a workflow model, or a part of it, needs
to be represented using a specific language. For example a part of a process,
usually a sub-workflow, can be transferred to a different WfMS; the internal
Petri Nets representation must be converted in a language description the third-
party WfMS understands. Unfortunately this kind of conversion is not always
possible, for example there is no explicit semantics for translating a Petri Net
in terms of π-Calculus formalism. A set of specific language compilers are
needed in order to achieve at compatibility with legacy WfMSs.

Interoperability as described in the WfMC’s reference model needs an en-
gine level synchronization mechanism identified with letter B in Fig. 1. A
runtime support for the interchange of various types of control information
and transfer of workflow relevant and/or application data between different
WfMSs. Synchronization can be useful even when several instances of the
same workflow engine want to collaborate; it can be useful when we want to
use the WfMS as distributed service to increase its performances.



A Practical Approach for a Workflow Management System 7

Figure 3. The WfMS deploy scenario 1

4. Implementation
The implementation will rely on the gLite middleware developed within the

EGEE project, due to its maturity and its large adoption. Job submission in
gLite is done by the Workload Management System (WMS) [12]; it comprises
a set of Grid middleware components responsible for the distribution and man-
agement of tasks across Grid resources. The core component of the WMS is
the Workload Manager (WM) whose purpose is to accept and satisfy requests
for job management, expressed via a ClassAd-based Job Description Language
(JDL). The WMS also supptorts the execution of single workflows expressed
as DAGs. Job monitoring in the WMS is provided by the Job Logging and
Bookkeeping Service (LB).

Many scientific workflows are expressed as JDL DAGs. As first step, our
purpose is to provide a mechanism that allows those legacy processes to take
advantage of the WfMS. Thanks to a JDL parser the DAG model can be ex-
tracted and then converted (using the model converter) into a Petri Net the
WfMS can execute. Subsequently we would like also to investigate the inte-
gration of the BPEL workflow language providing a π-Calculus to Petri Net
model translator as proposed in [11].

Initially the WfMS will run as a separate process on a dedicated server, as
shown in Fig. 3. In this scenario the client sends the workflow description
to the WfMS server, which executes it submitting jobs to the the Grid. The
WfMS server also allows the client to monitor the workflow execution. This
kind of solution is simple to realize but has some disadvantages: as far as a
workflow could run for several days a failure in the WfMS server could cause
the loss of the entire process and data. To avoid that the server must provide
high reliability and recovery tools.



8

Figure 4. The WfMS deploy scenario 2

Later we will investigate an alternative solution that takes effort of the Grid
environment to run users’ workflows. In fact the Grid provides computational
resources and mechanisms that helps failover management which makes run of
the WfMS as a Grid job a strategic choice. Grid is a batch system where users
send jobs and waits for their termination; a WfMS is also a sort of complex
job which can be submitted to the Grid within the workflow description. As
shown in Fig. 4, the client submits a workflow using the Grid middleware; a
new WfMS instance will start on a Grid node (selected by the WMS) and it
will use the Grid Abstraction Layer for job submission and monitoring.

As a consequence of these considerations, the WfMS must easily adapt to
environment changes. Therefore during the development stage we will not
focus on the system itself but in defining a set of basic functions, according
to the micro-kernel pattern, which the WfMS will rely on, making changes
simpler.

5. Conclusions and Future Work
In this paper we introduced a WfMS architecture with the intent to be com-

patible with the roadmap of the CoreGRID project. The main focus will be
on language conversion and interoperability between WfMSs using language
and model translators; Grid middleware independence will be satisfied thanks
to a layered architecture. The combination of these features makes it possible
for users to run their legacy workflows (usually written in different languages)
on a large set of computational resources. In fact, coordination of workflows
among several heterogeneous WfMSs is one of the main challenges in today
WfMS research.

The WfMS we are proposing is quite simple compared to other WfMSs like
Triana or GWES; for example it lacks QoS management, advanced planning



A Practical Approach for a Workflow Management System 9

techniques and so on. However, one of the purposes of this work is to introduce
a generic lightweight WfMS core with basic functions where advanced func-
tionalities can be easily and dynamically integrated thanks to the micro-kernel
architecture. A WfMS for researchers who want to investigate high level as-
pects related to workflows management without taking care of low level prob-
lems such us job submission, data transfer and so on.

References
[1] Condor DAGMan, http://www.cs.wisc.edu/condor/dagman/

[2] D. Colling et al.: Adding Instruments and Workflow Support to Existing Grid Architec-
tures, International Conference on Computational Science (3), 2006.

[3] Kurt Jensen: An Introduction to the Theoretical Aspects of Colored Petri Nets, Lecture
Notes in Computer Science (Springer), 1994.

[4] A. Hoheisel and U. Der: Dynamic workflows for Grid applications, in: Proceedings of
the Cracow Grid Workshop ’03 (Cracow, Poland, 2003).

[5] Dragos A. Manolescu: An extensible Workflow Architecture with Object and Patterns,
TOOLSEE 2001.

[6] Douglas Schmidt et al.: Pattern-Oriented Software Architecture, Siemens AG, pages 171-
192, 2000.

[7] D. Hollingsworth: Workflow management coalition: The workflow reference model, Doc-
ument TC00-1003, Workow Management Coalition, 1994.

[8] Workflow Patterns, http://www.workflowpatterns.com.

[9] W.M.P. van der Aalst: The Application of Petri Nets to Workflow Management, The Jour-
nal of Circuits, Systems and Computers, pages 21-66, 1998.

[10] Martina Alt et al.: A Grid Workflow Language Using High-Level Petri Nets, Lecture Notes
in Computer Science (Springer), CoreGRID Technical Report Number TR-0032, 2006.

[11] Christian Stahl: A Petri Net Semantics for BPEL, Humboldt University Berlin, 2004.

[12] P. Andreetto et al.: Practical Approaches to Grid Workload and Resource Management
in the EGEE Project, Conference for Computing in High-Energy and Nuclear Physics
(CHEP 04), Interlaken, Switzerland, 27 Sept - 1 Oct 2004.


