

Petri Nets

small tutorial.

What is a Petri Net?

- Mathematical representations (<u>modeling language</u>) of discrete distributed systems;
- Invented in 1962 by Carl Adam Petri in his Ph.D thesis;
- It graphically depicts the structure of a distributed system as a directed bipartite graph;
- Execution of Petri nets is nondeterministic (well suited for modeling the concurrent behavior of distributed systems);

INFN

Definition

- A Place/Transition net is a structure N = (P, T, Pre, Post)
 where:
 - P is a set of **places** represented by circles, |P| = m;
 - T is a set of *transitions* represented by bars, |T| = n;
 - Pre: P × T → N is the pre-incidence function that specifies the arcs directed from places to transitions;
 - Post: T × P → N is the post-incidence function that specifies the arcs directed from transitions to places.

Petri Net

$$P = \{p_1, p_2, p_3, p_4\}, T = \{t_1, t_2, t_3, t_4, t_5\}$$

$$Pre = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} Post = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

$$t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5$$

$$t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5$$

Tokens and Marking

A *marking* is a function M: P → N that associates to each place a non negative number of tokens. The initial marking is called M₀. (M₀ = [1 0 0 0]^T)

Enabling

- A transition is enabled if its each input place contains at least as many tokens as the weight of the arc indicates.
- An enabled transition can fire between time 0 and infinity.

Firing

- Firing an enabled transition transforms the state:
 - subtract the input arc weights from the token counts of the input places;
 - add the output arc weights to the token counts of the output places.

Modeling structures (1/2)

Sequence

Choice (non determinism)

Modeling structures (2/2)

Concurrency

The Producer/Consumer

Petri Net Properties

- The state and the evolution of the net can be modeled in a formal way:
 - state equation,
 - reachability (coverability) graph.
- The *behavioral properties* depends on the <u>structure</u> of the net and the <u>initial marking</u>:
 - reachability,
 - boundedness and safeness,
 - liveness.

Reachability

- A sequence of transition firings can be seen as a sequence of markings:
 - **DEF**: A marking M_k is reachable from initial marking M_0 if a sequence transition firings which transforms M_0 in M_k exists.
- The reachability of the states can be represented with a reachability graph;
- It is used to check a wrong state such as an elevator moving while the door is open.

Boundedness and Safeness

- **DEF**: A Petri net is k-bounded if the number of tokens in each place (for each possible evolution) of the net is equal or less than the integer positive number k.
- A Petri net is <u>safe</u> if it is 1-bounded.
- A Petri net is bounded if all its reachability graphs all have a finite number of states.
- Boundedness of a Petri net is used to model that system resources, such as CPUs, are bounded.

Liveness (1/2)

- **DEF:** A transition t_j is <u>live</u> if it is potentially firable in all reachable markings (as a consequence, a transition is live if it does not miss the possibility of fire);
- Liveness is computationally *difficult to check*, so 5 different levels of liveness $(L_0 L_4)$ are defined;

Liveness (2/2)

- A transition t_j in a Petri net is:
 - L_o live, or <u>dead</u>, if and only if it can not be fired;
 - − L₁ live if and only if it <u>can possibly</u> be fired;
 - **-** ...
 - L_4 live or simply live if and only if in any reachable state M, t_j is L_1 live (equivalent to previous slide liveness definition).
- The concept of liveness is referred to the total absence of deadlocks in the net evolution;

High Level Petri Net (HLPN)

- It is an extension to Petri net model (completely back compatible); it adds:
 - data modeling (<u>Colored</u> Petri Nets);
 - time modeling (<u>Timed</u> Petri Nets);

- hierarchy modeling (Hierarchy Petri Nets);

Petri Net Representation

- XML-based language for representing Grid workflows based on HLPN;
- Describe either the abstract and the concrete (extensions) workflow;

END!