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Abstract Nowadays, the usage of workflow management systems (WfMSs) for automat-
ing complex IT processes in Grid environments is gaining more and more impor-
tance. The motivation of this trend is the demand for reducing the execution time
and the organizational overhead, and for increasing the reusability and reliability
of processes. Most WfMSs and corresponding workflow description languages,
however, are bound to a specific Grid middleware, which limits the reusabil-
ity and makes it difficult to interchange workflows between different WfMSs.
This paper continues the standardization process started inside the CoreGRID
project and presents an extension to the Petri-Net-based Grid Workflow Descrip-
tion Language that enables the middleware-independent definition of workflows,
which can be processed by several WfMSs. A real-world example workflow us-
ing the rendering software POV-Ray serves as a case study to validate the inter-
operability of workflow descriptions over two WfMSs targeting different Grid
middlewares: the Grid Workflow Execution Service and the INFN/CNAF WfMS.
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1. Introduction
According to Ian Foster et al. [7], the service-oriented science paradigm is

going to become one of the main topics in second generation Grids, with the
ability to use third-party services, compose them into new functions and pub-
lish them as a new service. In this scenario, the composition and the execution
of coupled services, which is automated by Workflow Management Systems
(WfMSs), is of special importance. In the business environment, workflows
are already widely used for business processes, and interoperability is made
possible, e.g., by means of the BPEL4WS standard established in 2003 [5].
Unfortunately, the approaches from the business domain are not directly ap-
plicable to scientific workflows as the scientific research processes are much
more dynamic than settled business processes. Therefore, interoperability is
still an open issue in the scientific environment. Actually, there is no recog-
nized standard language for scientific workflow descriptions, and even about
the formalisms used to model workflows (π-Calculus [15], DAGs, Petri Nets
[1], UML diagrams [6]) still exists a debate [2].

The Petri Nets formalism [1] is more suitable for modeling scientific work-
flows, it can formally describe both the data and the control flow making the
state of the program execution explicit. Petri Nets have been improved since its
original definition introducing several extensions, such as Colored Petri Nets,
Timed Petri Nets and Hierarchical Petri Nets. High Level Petri Nets (HLPN)
refer to a Petri Net model extended with tokens that represent high-level values,
i.e., a place is marked by a multiset of structured tokens; and they are more suit-
able for workflow representation [11]. Inside the CoreGRID European project,
a HLPN-based workflow description language, called Grid Workflow Descrip-
tion Language (GWorkflowDL), has been proposed by Fraunhofer FIRST in
[9],[3].

In contrast to other approaches from the business domain, such as BPEL [4],
the GWorkflowDL has much simpler and more formal semantics, which eases
the usage of formal analysis methods and enables also unskilled end users to
model and modify workflows by their own. The GWorkflowDL is an XML-
based language for representing Grid workflows which consists of two parts:
(i) a generic part, used to define the structure of the workflow, reflecting the
data and control flow in the application, and (ii) a middleware-specific part (ex-
tensions) that defines how the workflow should be executed in the context of
a specific Grid computing middleware. While the generic part can be shared
among different GWorkflowDL-compatible middlewares, the extensions don’t
because they are strongly middleware-dependent. Practically, — as far as ex-
tensions are middleware-specific — the interoperability of the GWorkflowDL
is currently limited to abstract workflows without connection to functional op-
erations.
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Another aspect of Petri-Net-based workflows regards the potentially high
number of nodes (places and transitions) often involved in complex workflow
descriptions. As far as the Petri Net formalisms are graph-based, the high
number of nodes becomes an important issue during the design time of the
workflow; the higher the number of nodes — the more complex it is to debug
and change it.

In this paper, we introduce some improvements to the GWorkflowDL in or-
der to achieve what in mainstream programming languages is known as the
“write once and run everywhere” paradigm. We are going to define an ab-
stract kind of operation, called operationClass, that GWorkflowDL com-
patible WfMSs must understand and implement; and mechanisms used to map
such abstract operation into concrete services, such as the invocation of Web
Service method calls or the remote execution of command line programs. Also
a mechanism for sub workflow invocation will be defined, that as happens with
local method calls, it allow code reuse and simplify the overall design process
of workflows. The concept of abstract operations applied to the GWorkflowDL
solves some interesting interoperability issues and opens several scenarios in
workflow execution; for example, a platform might demand the execution of
an independent part of a workflow (a sub-workflow, for example) to a different
WfMS, or furthermore a repository of workflow descriptions can be managed
and shared among several WfMSs.

Sect. 2 describes in detail the extensions introduced in the GWorkflowDL,
defining operation language elements for the web service invocation and the
remote program execution. In Sect. 3 we will show a concrete example of
such interoperability running a workflow description on two different plat-
forms (based on gLite and on Globus Toolkit 4), concluding with the descrip-
tion of how we intend to progress with this work in the future in Sect. 4.

2. Concept
In order to better illustrate the rationale behind this paper, we first consider a

trivial workflow example compound by a single operation. Using the Petri Net
formalism, it can be expressed as shown in Fig. 1. The transition T performs
a single workflow operation, and the input and output places are used to hold
the tokens which represent the input and output data involved in the operation.

The operation associated to the transition T can be formally described as
(b1 . . . bM ) = f(a1 . . . aN ) and, according to the Petri Net theory, it is exe-
cuted when all its input variables can be bound to a token from the input places
and if the output places have not reached their capacity. In this case, a1 . . . aN

variables are bound, at runtime, respectively to the tokens t1 . . . tN , and the
results of the operation, temporary available in variables b1 . . . bN , are stored
as tokens into the output places. For more details about how to apply the Petri
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Figure 1. A generic single operation modelled as a HLPN-based workflow

<workflow>
<place ID="p1">
<token><data><t1 xsd:type="type">value</t1></data></token>

</place>
<place ID="p2">
<token><data><t2 xsd:type="type">value</t2></data></token>

</place>
<place ID="q1" />
<transition ID="T">
<inputPlace placeID="p1" edgeExpression="a1"/>
<inputPlace placeID="p2" edgeExpression="a2"/>
<outputPlace placeID="q1" edgeExpression="b1"/>
<operation /> <!-- generic operation -->

</transition>
</workflow>

Figure 2. GWorkflowDL description of the Petri Net in Fig. 1 consideringN = 2 andM = 1

Net theory to Grid workflows, including conditions (“transition guards”) and
XPath edge expressions, please refer to [11].

Using the GWorkflowDL, the structure of the Petri Net can be described as
depicted in Fig. 2. The description relies on the generic part of the GWork-
flowDL, actually the structure of the network is completely described (in terms
of places, transitions, and edges); however, a workflow also consists of op-
erations to be performed and they cannot be represented at this level of the
language.

In order to solve this interoperability problem, the GWorkflowDL has been
extended with the concept of an abstract operation, which, due to its abstract
nature, can be part of the generic workflow description. Therefore, we intro-
duced the operationClass element, depicted in Fig. 3 (i), which contains all
necessary information for the WfMS to automatically map the abstract opera-
tion onto a concrete operation and which at the same time remains completely
middleware-independent.
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<transition ID="T">
...
<operation>
<op:operationClass name="f"> (i)
<!-- concrete service providers’ list -->
<op:execOperation software="software:g" (ii)
hardware="hardware:localhost" quality="0.8"/>

<op:subwOperation gwdl="file://workflows/g.gwdl" (iii)
operationName="g" quality="0.9" selected="true"/>

</op:operationClass>
</operation>

</transition>

Figure 3. The operationClass element (i) including two child elements (ii) and (iii)
representing concrete implementations of the abstract operation f

The mapping of the abstract operation f onto concrete services implement-
ing f is done by the WfMS’s resource matching and scheduling process, and
bases on the following information: The name of the abstract operation (f ), the
edge expressions of the incoming (a1 . . . aN ) and outgoing edges (b1 . . . bM )
and the values of the input tokens (t1 . . . tN ). Therefore, we can write:

(g1 . . . gL) = fmap(f, a1 . . . aN , b1 . . . bM , t1 . . . tN ) (1)

L represents the number of matching service candidates (g). In a more sophis-
ticated approach, the mapping could also depend on larger workflow regions,
taking into account the previous and following operations within the workflow,
e.g., to optimize the communication between operations.

Fig. 3 (ii) and (iii) depicts an example result of this mapping process with
L = 2. The abstract operation f , represented by the operationClass ele-
ment, has two concrete implementations; the first one (ii) is the remote exe-
cution of the program identified by the name software:g (e.g., representing
the program /usr/bin/g) demanded to the remote machine with the identi-
fier hardware:localhost, the second one (iii) is the invocation of a Sub-
Workflow whose definition is located at file://workflows/g.gwdl. The
mapping algorithm itself is strictly related to a specific middleware implemen-
tation, it could, for example, just be a simple lookup-table which maps abstract
functions to concrete services or a more complex solution involving ontologies,
based on equation 1.

In order to demonstrate how this mechanism could work in a heteroge-
neous Grid environment, two different types of concrete workflow operations
have been considered in our example. In fact, the majority of the scientific
workflows rely on few types of operations which are mostly represented by
either Web service invocation or remote program execution. The UML di-
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Figure 4. UML representation of the operationClass XML Schema. (Attributes with the
’*’ character represent required XML attributes)

agram depicted in Fig. 4 shows the relations among the operationClass
XML element and the concrete operations wsOperation, execOperation
and subwOperation. The diagram in Fig. 4 represents the XML Schema of
the namespace “op”. XML elements are considered as UML classes, and XML
attributes as UML attributes (where the * character in UML attributes identi-
fies required XML attributes). The full XML schema will be soon available for
download at http://www.gridworkflow.org/gworkflowdl/operation.

The genericOperation element in the diagram doesn’t represent any con-
crete operation but allows to factorize some common properties of underlying
operations. Each concrete operation has a quality attribute used to describe
the quality of the provided service, which is essential for providing certain QoS
and for optimizing the resource selection. The quality attribute can depend
on various dynamic monitoring properties, such as load, free memory, reac-
tion time, security constraints and reliability of the resources. The optional
elements in and out express a specific mapping between the input and output
places on the one hand and the input parameters and return values of the as-
sociated operation on the other hand. More details about concrete operations
representation is provided in the next sections by means of examples.

2.1 Web Service Invocation
Today the main Grid middlewares used in the scientific community (Globus

Toolkit, UNICORE, and gLite) expose Grid middleware functionality as Web
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<operation>
<op:operationClass name="f">
<!-- b1 = f(a1,a2) --> (i)
<op:wsOperation wsdl="http://localhost:8080/f?wsdl"

operationName="f" quality="0.5">
</op:wsOperation>
<!-- b1 = f(a1,a2) = g(a1/x,a2*a1+15,35) --> (ii)
<op:wsOperation wsdl="http://localhost:8080/g?wsdl"

operationName="g" quality="0.9" selected="true">
<in name="input1">a1/x</in> <!-- child "x" of element "a1" -->
<in name="input2">a2*a1+15</in>
<in name="input3">35</in>
<out name="output1">b1</out>

</op:wsOperation>
</op:operationClass>

</operation>

Figure 5. Example of two concrete Web Service operations. (i) shows the default mapping
scheme, (ii) a more complex mapping between the abstract and the concrete operation and its
parameters, using XPath 1.0 syntax.

Services (Grid Services); so it is possible to think of workflows as a set of Web
Service invocations executed in respect of their interdependencies. Further-
more, Web Service helps to achieve interoperability as far as it is a software
technology designed to support interoperable Machine-to-Machine interaction
over a network based on message exchange according to the SOAP protocol.

Considering the Petri Net structure described in Fig. 2, the abstract operation
f could be implemented by two concrete Web Service candidates as depicted
in Fig. 5.

The WSDL interface description of the first concrete Web Service oper-
ation (i) is located at http://localhost:8080/f?wsdl. In general, this
WSDL document also specifies the binding URL of the target Web Service
(e.g., http://localhost:8080/f). The attribute operationName declares
the name of the Web Service method f to be invoked by the operation. As far
as there is no additional information, it means that the input tokens (consumed
from the input places of the transition) must be used in the invocation argu-
ment list considering the order of the message part names specified within the
WSDL and matching it with the incoming edge expressions. The return value,
which is unique, is associated to the unique output variable b1.

In the second service candidate (ii) the in XML elements are used in order
to specify a custom mapping for the input parameters (and return value) of
the Web Service method invocation. In this case, the f function has been
mapped onto the concrete service g which receives four input values. Within
the in element, XPath expressions can be expressed as input parameters and
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the mapping between the values; their position in the web service method call
is established in two ways: positional if the name attribute is not specified
(not shown here); and WSDL-based if the name attribute is matched with the
SOAP message part names of the WSDL declaration of the method (as shown
in Fig. 5). The out XML elements are used analogically to describe mappings
for output parameters.

The additional XML element “property” defined in the genericOperation
as depicted in Fig. 4 can be used in order to specify additional information
about Web Service invocation. A typical usage of this element could be re-
lated to authorization issues; but those aspects, which are strongly related to a
particular middleware, are beyond the scope of this paper.

2.2 Program Execution
Since its birth, the Grid has been defined as a batch system. Many of the

Grid-based WfMSs allow to express workflows as a collection of Grid jobs
which are submitted to a Grid middleware or a local batch/queue system (such
as PBS or Condor) respecting the dependencies among them. Job submis-
sion, i.e., the remote execution of command line programs, is a Grid primitive
which is provided by all well-known Grid middlewares, the operation, how-
ever, cannot be generalized, as happens with Web Services, because of the
middleware-dependent job submission interfaces. As a consequence, the pro-
gram execution operation could have several implementations depending on
the number of Grid middlewares addressed by a specific platform. The usage
of the in, out and property XML elements is similar as described in the
previous section; a concrete example will be discussed in the next chapter.

2.3 Sub-Workflow execution
The sub-workflow invocation mechanism allows to define wokflows as sim-

ple components, which can be combined together into higher-level workflows.
The interface of a sub-workflow is defined by two sets of places considered as
input and output places of the sub-workflow. A sub-workflow can be associated
to a transition if compatible, it means that the number (and type) of the input
and output places must be equal to the sub-workflow interface. The definition
of a sub-workflow can be done using the GWorkflowDL without any exten-
sion, just by linking a subwOperation to another GWorkflowDL document,
which represents the sub-workflow as shown in Fig. 3.

3. Case Study
This section describes a real-world application of the above mentioned con-

cept in order to validate the interoperability of the proposed workflow lan-
guage extensions regarding existing Grid infrastructures. In the following, we
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describe two implementations of a GWorkflowDL execution engine, one im-
plemented in C++ supporting Web Services and actually working on top of
the gLite middleware; the other one, called Grid Workflow Execution Service
(GWES) implemented in Java supporting Globus Toolkit 4 and standard Web
Services.

3.1 The INFN/CNAF Workflow Management System
The Workflow engine developed by the INFN/CNAF research center within

the CoreGRID project is mainly written in C++ and formally implements the
HLPN formalism [14]. The main idea behind the engine design is that every
kind of task can be described composing a finite number of simple operations
into a new workflow modeled with the Petri Net formalism. The engine relies
on the fact that operations of Petri Net transitions can be one of the following:
(i) Web Service invocation, (ii) local method execution, or (iii) sub-workflow
invocation. This makes it possible, for example, to define a workflow that
describes how to submit a job to the gLite (or the UNICORE) Grid middleware;
and, using the Sub-Workflow invocation mechanism, such workflows can be
mixed up in order to represent more complex tasks.

The advantages of this design choice are manifold: the support of a new Grid
middleware can be provided at runtime simply by supplying a new workflow
description; because of its simplicity, the engine’s core is fast and extremely
reliable. The workflow engine is still in prototyping stage; however, in the
current state of development it is capable of running simple workflows on the
gLite middleware.

3.2 The Grid Workflow Execution Service (GWES)
The Grid Workflow Execution Service (GWES) [12],[8] is a workflow en-

actment engine developed and enhanced under the leadership of Fraunhofer
FIRST within various projects, such as the Fraunhofer Resource Grid, K-Wf
Grid, Instant-Grid, MediGRID, Enterprise Grids, and CoreGRID. The GWES
enables automation and interactive monitoring of complex processes executed
in Grid environments. A unique feature of the solution is the completely virtu-
alized resource allocation based on abstract modelling of the process structure
and the powerful resource description formalism. The GWES controls the exe-
cution of workflows and maintains a persistent image of their state in an XML
database. It is implemented as a standard Web Service thus easing its inte-
gration into existing IT infrastructures and business processes. An intuitive
user interface is available as a JSR 168-conformant Java portlet which can
be smoothly integrated into existing portal solutions (e.g., GridSphere). The
Grid Workflow Management System is compatible to several Grid middleware
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Figure 6. Representation of the POV-Ray example workflow for rendering a short animation
of 24 frames. The tokens (with the number 24) represent the 24 input 3D-scenes, the output
formats and the target destination for each image. Each input 3D-scene is splitted (povray-pre)
into 3 POV-Ray concurrent jobs (povray). The partial images are merged afterwards (povray-
post-merge). The povray-post-convert operation converts the rendered images into the desired
format. Finally, the resulting images are transferred to the destination (transferFile).

stacks (such as Globus Toolkit, Condor, PBS, Web Services) and operating
systems (Windows, Linux, Unix, Mac-OS).

The GWES interprets the GWorkflowDL supporting different abstraction
layers of transitions or operations, respectively. The system is currently being
used by a number of projects in various domains, such as bioinformatics, traffic
management, flood forecasting, environmental risk analysis, and in enterprise
resource planning. The licensing allows free use for scientific or educational
purposes.

3.3 Interoperable Workflow Example
This section presents a real-world example workflow from the digital media

production domain, which uses distributed installations of the Persistence of
Vision Ray-Tracer (POV-Ray) [16], in order to speed up the rendering process
for images or animations. POV-Ray creates three-dimensional, photo-realistic
images using a rendering technique called ray-tracing. It reads in a text file
containing information describing the objects and lighting in a scene and gen-
erates an image of that scene from the view point of a camera also described
in the text file. In order to speed up the rendering process, the Grid workflow
presented in this section splits up the rendering job into several sub-jobs which
are either responsible for a certain image region (e.g., lines 161 − 320 of an
480× 640 image), or for a certain set of frames within an animation.
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Fig. 6 depicts an example workflow for validating the interoperability be-
tween the INFN/CNAF WfMS (with focus on gLite) and the GWES (with
focus on Globus Toolkit 4) using the extended GWorkflowDL. The workflow
automates the rendering process for 24 images in Full-HD 1080p format (res-
olution 1080 × 1920), each of them splitted into three sub-processes (i.e., for
image lines 1−360, 361−720, 721−1080). So in total, this workflow could be
distributed to maximum 24× 3 = 72 concurrent Grid operations. The abstract
workflow description itself is middleware-independent but contains all infor-
mation required to find suitable service implementations for each workflow
operation, such as the pre-processing step splitting the input data (povray-pre),
the actual rendering step (povray), the two post processing steps for merging
the results (povray-post-merge and povray-post-statistics) and the conversion
of the final images (povray-post-convert). Finally, the images are transfered to
a user-defined location by means of the operation transferFile. The methodol-
ogy for mapping these abstract operations onto suitable Web Service method
calls or remote/local program executions is left to the specific WfMS.

The focus of our work is to show the interoperable description and execu-
tion of workflows using the GWorkflowDL which we validate using the above
example workflow. The discussion of the parallelization itself and the achieved
speed-up (as well as the contents of the nice animation which we rendered) is
beyond the topic of this paper.

4. Conclusions and Future Work
In the recent years, several workflow management systems have been es-

tablished in the scientific Grid community, however, almost all of them are
targeting a single Grid middleware and the workflow description languages are
more or less bound to concrete execution platforms. In order to overcome this
drawback, we extended the Grid Workflow Description Language (GWork-
flowDL) by introducing an abstract operation element, which is middleware-
independent, and can be interpreted and executed by several workflow man-
agement systems targeting on different Grid middleware.

We are currently validating this approach using an interoperable example
workflow which automates the parallel rendering of a 3D animation using
POV-Ray on two different target workflow management systems: the INFN/CNAF
WfMS and the Grid Workflow Execution Service (GWES).

As future work we plan to implement a hierarchical approach, which eases
the reusage of certain workflow regions as sub-workflows. Another topic which
demands continuous research is the mapping of the GWorkflowDL from and
to other workflow description formalisms and to enable the cross-delegation of
workflow parts or whole workflows from one WfMS to another in a productive
system.
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