
Secure Programming
and

Common Errors

brought to you by Michele “antisnatchor” Orru’
Computer System Security course lead by Prof. Ozalp Babaoglu

5 May 2009

Monday, May 4, 2009

Who am I ?

Bachelor Degree in Internet Sciences

Independent Security Researcher

Owner of http://antisnatchor.com
security advisory blog

Collaborator of Apache OFBiz
(ofbiz.apache.org) and OpenTaps(www.opentaps.com)

JEE developer

Monday, May 4, 2009

http://antisnatchor.com
http://antisnatchor.com
http://www.opentaps.com
http://www.opentaps.com

Seminar Objectives

Discuss the most relevant SANS top 25
errors that concern Web Applications

Practical demonstrations of some
vulnerable Real World web applications
(my totally independent security research)

Understand the impact of these threats
on the most valuable web-app assets

Monday, May 4, 2009

What we’ll discuss

CWE-20: Improper Input Validation

CWE-116: Improper Encoding or Escaping of Output

CWE-209: Error Message Information Leak

CWE-89: Failure to Preserve SQL Query Structure (SQL injection)

CWE-79: Failure to Preserve Web Page Structure (XSS)

CWE-352: Cross-Site Request Forgery (XSRF)

Monday, May 4, 2009

CWE-20: Improper
Input Validation

The biggest issues on today’s Internet
Applications (not just WebApps)

Improper Input Validation can lead to
security vulnerabilities when attackers
can modify input in unexpected ways for
the application

The only way to protect our applications
is by understanding that all input can
be malicious

Monday, May 4, 2009

CWE-20: Example
8e6 R3000 Internet Filter (commercial
HTTP(s) Proxy filter solution)

Monday, May 4, 2009

Credits: nnposter

DNS based website blacklist can be
bypassed by providing a forged request
with custom HTTP header

GET / HTTP/1.1
X-DecoyHost: www.milw0rm.org
Host: www.blocked.org

CWE-20: Example

Monday, May 4, 2009

http://www.allowed.org
http://www.allowed.org
http://www.blocked.org
http://www.blocked.org

CWE-20: Mitigation

Understand every potential attacks
areas: parameters, arguments, cookies,
headers, files, databases...

Whitelist approach instead of blacklist
(you’re gonna certainly miss some
character encoding variants)

WebApp case: use a WebApp Firewall
(ModSecurity/F5) or an Input Validation
Framework for your language.

Monday, May 4, 2009

CWE-20: Mitigation
ModSecurity

Monday, May 4, 2009

A common set of interfaces for security
controls such as:

Authentication
Access Control
Input Validation
Output Encoding
Cryptography (secure Java implementation
of md5/sha*/BlowFish/AES)
Error handling/logging

CWE-20:Mitigation
OWASP ESAPI

Monday, May 4, 2009

Input validation framework for PHP based
applications
Developed by skilled hackers (Mario
Heiderich - .mario on sla.ckers.org)
Try their demo with your nasty attack
vectors here: http://demo.php-ids.org/

CWE-20:Mitigation
PHPIDS

Monday, May 4, 2009

CWE-116: Improper
Encoding/Escaping
of Output

Insufficient output encoding is the
often-ignored sibling to poor input
validation

Even if input has been filtered,
application output could not be safe:
it need to be encoded too

Common examples: HTML/JavaScript
injection on web based applications

Monday, May 4, 2009

CWE-116: Example
Eclipse BIRT (reporting system that
integrates with Java/JEE applications)

Monday, May 4, 2009

Credits: antisnatchor
[http://antisnatchor.com/2008/12/18/eclipse-birt-reflected-xss]

Java Exception stack trace was not
HTML-encoded, so we can inject an iframe
GET

/birt-viewer/run?__report='"><iframe
%20src=javascript:alert(666)>&r=-703171660 HTTP/1.1

Host: localhost:8780

Our code was executed correctly in the
application output

CWE-116: Example

Monday, May 4, 2009

CWE-116: Mitigation

Always encode Java stack traces (better
to don’t show them to prevent
Information Leakage)

Always encode application output,
especially if it contains previously
user-supplied input

WebApp firewall and ESAPI/PHPIDS (you
lazy developers :))

Monday, May 4, 2009

CWE-209: Error Message
Information Leak

Chatty or debug error messages could
disclose important important
informations to attackers

This information is used in the
Penetration Testing phase called
“Reconnaissance”

Even these little secrets can greatly
simplify a more concerted attack that
yields much bigger rewards

Monday, May 4, 2009

CWE-209: Examples
1. www.dm.unibo.it

Credits: antisnatchor

MySQL error when forging a malicious
request altering the anno parameter
GET /seminari/archivio.php?anno=2008%27 HTTP/1.1

Host: www.dm.unibo.it

[...]

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Cookie: dm=[...]

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it
http://www.dm.unibo.it
http://www.dm.unibo.it

Application response:

CWE-209: Examples
1. www.dm.unibo.it

Causing an SQL syntax error we
discovered that the DB backend is MySQL

We can now run more targeted attacks

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

Credits: antisnatchor

Session Management was (IS actually)
broken and can be manipulated

If we are the hacker riding the victim’s
session, and the victim then logout from
Uniwex, his session (and ours, because
is the same) is invalidated.

If we invalidate a session and then we
try to submit the previously “invalid”
session token... MAGICALLY ...

CWE-209: Examples
2. uniwex.unibo.it

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

CWE-209: Examples
2. uniwex.unibo.it

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

CWE-209: Examples
2. uniwex.unibo.it

The JSP page /unique/UniqueNewException.jsp is
clearly leaved there for debug purposes

It shouldn’t be there in production!!!

This revealed us that Tomcat is used as
Application Server, and we’ve also
obtained the specific version of a few
frameworks on which the application was
built:
/home/unimatica/uniwex/uniwexng-4.4.0/WEB-INF/lib/struts-1.1.jar

/home/unimatica/uniwex/uniwexng-4.4.0/WEB-INF/lib/myfaces-api-1.1.4.jar

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

CWE-89:
SQL Injection

These days most software is all about
the data and how it can be served to
maximize user and business needs

The most common storage solution is a
Relation Database(Oracle, MySQL,
Postgres, MS-SQL, Sybase)

If attackers can influence the SQL that
you use to communicate with your
database, then they can do nasty things
for fun and profit

Monday, May 4, 2009

CWE-89:
SQL Injection

Discovering which web application
parameters/cookie/headers are querying
the DB, we can test if input is properly
escaped or not

The previous example on www.dm.unibo.it
demonstrates that input is not being
escaped at all

After we discovered the SQL injection we
can fire-up our favorite injection tool
to retrieve useful informations

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

CWE-89:Example
1. www.dm.unibo.it

Credits: antisnatchor

Confirmed unescaped numeric injection on
GET parameter “anno”

We were able to obtain details about the
application stack:Apache 2.2.3, PHP
5.2.0, MySQL >= 5.0

For demonstration we retrieved the exact
name of the database name to which the
web app is bounded: dipartimento

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

CWE-89:Example
1. www.virtus.it

Credits: antisnatchor

Confirmed unescaped numeric injection on
GET parameter “ID” (SPNewsDettaglio.asp)

We were able to obtain details about the
application stack:Microsoft IIS 6, ASP
and SQL Server 2000

We retrieved the exact name of the
database name to which the web app is
bounded: ServizioNews (and a few tables
too)

Monday, May 4, 2009

http://www.dm.unibo.it
http://www.dm.unibo.it

CWE-89:
Mitigation

Implement a validation framework
(previously discussed) to protect your
application

Use stored procedures

Hibernate on JEE, NHibernate on .NET

DB specific: Oracle DBMS_ASSERT
directive, MySQL real_escape_string()
function

Use a whitelist approach, permitting
only “known good input”

Monday, May 4, 2009

CWE-89:
Dangers

As you can see SQL injection can be
devastating for the integrity of your
data

Data loss is probably the most negative
consequence for an Enterprise

If the web application is storing web
page content inside the DB, we can
deface the site too

Monday, May 4, 2009

CWE-79: The Plague of
Cross Site Scripting

We can inject JavaScript,HTML,VBscript
or other browser-executable content into
a pages generated by the application

The page is then accessed by other
users, whose browsers execute that
malicious script as if it came from the
legitimate user (the victim)

Monday, May 4, 2009

CWE-79: Examples
1. www.cia.gov

Credits: PaPPY

search URI: NS-query parameter is not
properly escaping malicious input,
leading to reflected XSS
https://www.cia.gov/search?NS-search-offset=483&NS-query=

%27;%20%0A}%20%0A%20alert(666);%20%0A%20function
%20makeGuidedSearchApplet2(){%0A%20str+=%27&NS-search-
type=NS-boolean-query&NS-max-records=20&NS-
collection=Everything&x=0&y=0&NS-search-page=results&

Monday, May 4, 2009

http://www.cia.gov
http://www.cia.gov

CWE-79: Examples
1. www.cia.gov

Monday, May 4, 2009

http://www.cia.gov
http://www.cia.gov

CWE-79: Examples
2. compraonline.mediaworld.it

Credits: antisnatchor

search URI: NS-query parameter is not
properly escaping malicious input,
leading to reflected XSS
https://www.cia.gov/search?NS-search-offset=483&NS-query=

%27;%20%0A}%20%0A%20alert(666);%20%0A%20function
%20makeGuidedSearchApplet2(){%0A%20str+=%27&NS-search-
type=NS-boolean-query&NS-max-records=20&NS-
collection=Everything&x=0&y=0&NS-search-page=results&

Monday, May 4, 2009

http://www.cia.gov
http://www.cia.gov

CWE-79: Mitigation

A real world case example: Apache OFBiz
implementation of ESAPI toolkit.

After my JIRA issue they started to take
really care of security (I’m glad to)

See http://fisheye6.atlassian.com/changelog/ofbiz?
cs=746409 and http://antisnatchor.com/2008/12/11/apache-
ofbiz-multiple-security-vulnerabilities

Monday, May 4, 2009

http://fisheye6.atlassian.com/changelog/ofbiz?cs=746409
http://fisheye6.atlassian.com/changelog/ofbiz?cs=746409
http://fisheye6.atlassian.com/changelog/ofbiz?cs=746409
http://fisheye6.atlassian.com/changelog/ofbiz?cs=746409
http://antisnatchor.com/2008/12/11/apache-ofbiz-multiple-security-vulnerabilities%5D
http://antisnatchor.com/2008/12/11/apache-ofbiz-multiple-security-vulnerabilities%5D
http://antisnatchor.com/2008/12/11/apache-ofbiz-multiple-security-vulnerabilities%5D
http://antisnatchor.com/2008/12/11/apache-ofbiz-multiple-security-vulnerabilities%5D

CWE-79: Mitigation

The changes of StringUtil.java class:

Monday, May 4, 2009

CWE-79: Mitigation

The changes of ModelScreenWidget.java:

Monday, May 4, 2009

CWE-79: Mitigation

Validate every parameter/cookie/header/
input that can be manipulated by a
potential attacker and then displayed on
the page

Do not create your own filters: you’ll
probably miss some attack vectors or
encodings

Use well known Encoding/Validation
frameworks such as
ESAPI,PHPIDS,Microsoft Anti-XSS
(yes, Microsoft, don’t laugh :))

Monday, May 4, 2009

CWE-352: Cross Site
Request Forgery

It exploits the trust that a website has
for the currently authenticated user and
executes unwanted actions on a web
application on his behalf

Once the request gets to the
application, it looks as if it came from
the user, not the attacker

If the victim has admin privileges on
the application: GAME OVER

Monday, May 4, 2009

CWE-352: XSRF
Concrete Consequences

Performing illegal actions such as using
victim's shopping cart, executing stock
trades

Changing DNS settings of home routers
(thanks pdp & GNUCITIZEN)

Performing a Denial Of Service attack on
the application

Combining it with XSS to build WORMS

Monday, May 4, 2009

1. Find a page with a lost-password form
inside and find out which fields would
be updated

2. Trick the administrator to load a
hacker page with a malicious request on
it that submits a new email

3. Administrator's e-mail is now changed
to the email submitted by hacker

4. A hacker performs a lost-password
request and receives a new password

CWE-352: XSRF
Concrete Consequences

Monday, May 4, 2009

CWE-352: XSRF
Who has been vulnerable?

ING direct [We discovered CSRF vulnerabilities in
ING's site that allowed an attacker to open additional
accounts on behalf of a user and transfer funds from a

user's account to the attacker's account.]

Youtube

New York Times

Gmail [http://directwebremoting.org/blog/joe/2007/01/01/
csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.ht

ml]

Monday, May 4, 2009

CWE-352: XSRF
Example

A simple practical attack:

http://x.x.x.x/account/doTransfer?from=666&to=667

where 666 is a potential victim account
and 667 the attacker one.

Tricking the victim to load that URL
will transfer money from one account to
another one.

Monday, May 4, 2009

CWE-352: XSRF
1. Apache OFBiz

Read my advisory here:
https://issues.apache.org/jira/browse/OFBIZ-1959

We can create a malicious form that will
add a product (eventually with some JS
inside) to the Catalog

If the victim is already authenticated
she will not even realize what she did

Monday, May 4, 2009

<form method="POST" id="xsrf" name="xsrf"

action="https://127.0.0.1:8443/catalog/control/
createProduct">

<input type=hidden name="isCreate" value="true">

<input type=hidden name="productId" value="hack02">

<input type=hidden name="productTypeId" value="DIGITAL_GOOD">

<input type=hidden name="internalName"
value="hack02<script>alert(document.cookie)</script>">

</form>

<script>document.xsrf.submit(); </script>

CWE-352: XSRF
1. Apache OFBiz

Monday, May 4, 2009

CWE-352: XSRF
Mitigation

Add a unique randomly-generated token to
each request (maybe as an hidden form
value): this n bit token is changed for
every request and is verified by the
application

<input id="fkey" name="fkey"
type="hidden" value="df8652852f139" />

Monday, May 4, 2009

CWE-352: XSRF
Mitigation

Use a secure framework such as ESAPI to
add random token to your requests

Implement AJAX functionalities with
secure libraries such as DWR-2.0 (Direct
Web Remoting) that automatically prevent
XSRF

Monday, May 4, 2009

Thanks for your
attention!

brought to you by Michele “antisnatchor” Orru’
Computer System Security course lead by Prof. Ozalp Babaoglu

5 May 2009

Monday, May 4, 2009

