WM SMonitor: a Monitoring Tool for Workload and Job Lifecyclein Grids

Daniele Cesini Danilo Dongiovanni
INFN-CNAF Bologna, Italy INFN-CNAF Bologna, Italy
daniele.cesini @cnaf.infn.it danilo.dongiovanni @cnaf.infn.it

Enrico Fattibene Tiziana Ferrari
INFN-CNAF Bologna, Italy INFN-CNAF Bologna, Italy
enrico.fattibene@cnaf.infn.it tiziana.ferrari@cnaf.infn.it

Abstract

Scheduling services are core Grid components of paramount importance to support the transparent distribution
of tasks to remote shared resources in an efficient way. High availability of these core services is thus of great
importance. Given the distributed nature of the system, monitoring the task lifecycle and the aggregate workflow
patterns generated by users belonging to various communitiesis particularly challenging.

This paper deals with the problem of Grid workload monitoring by reviewing the related requirements, and
illustrates the architecture and implementation of a tool, the WMSMonitor, which is designed to meet the needs of
various users categories, such as administrators, developers, advanced Grid users and performance testers.

1. Introduction

Job scheduling is a fundamental issue on Grid enmient. It must be efficient in order to minimihe twaiting
time before job execution and reliable providing failure recovery mechanisms to increase the sgéakeort ratio.
Moreover the resource discovery, brokering andufailrecovery tasks should be as transparent aghfgoss the
user. Difficulties in accomplishing these requiremseincrease proportionally to Grid size and to goibmission
rates. In the large scale worldwide Grid providedhe EGEE project [1], the scheduling task idfqrened by the
Workload Management System (WMS) service together with its job status advameet tracking facilitylLogging
and Bookkeeping (LB). They constitutes two of the key services posing the gLite middleware stack deployed on
the EGEE infrastructure.

The WMS central role as a user gateway to Grid mess makes the high availability of the service a
challenging issue, implying a systematic servicagust check and a prompt access to information reduior
problem debugging. Moreover, given the heterogememser communities it is important to extract friima WMS
detailed information on the job flow and submissipadalities. This also offers the chance to gagigimt on Grid
usage.

Even though several tools are available to moniteerall Grid performance and status [2], none ahth
provides detailed information on the WMS/LB statsd job flow. In this paper we present WMSMonitar,
monitoring tool for the gLite WMS/LB. Through a e Web interface, it provides a single accesstpoirboth
WMS/LB service status variables and to the WMS goibmission, processing and dispatching flow. Moeeov
keeping an historical archive it offers data aggtep facilities and statistical reports.

Analyzing few use cases we show how WMSmonitorltesa be an effective support tool for adminigtratand
developers to visualize and interpret problematiwvise conditions and to spot performance bottlkaede also
show how the continuous monitoring over months rgérise submission activity turned to be helpfuluser
community for its capability to measure performaand collect aggregated statistics.

This manuscript is structured as follows: Sectida & description of the gLite WMS/LB; Section 3debes the
needs that motivated the tool development; Sedligmresents the WMSMonitor tool architecture, impdened
sensors and Web presentation solution in det&s;tion 5 analyses use cases observed during E@aEtiucture
stress tests conducted by high energy physics coiitigs

2. ThegLiteWMSand LB services

WMS is a Grid service responsible for the distritmitof user tasks to the remote computing resouM#dS
supports this process by tracking events relatethéotasks during their lifecycle, by adopting ded recovery
procedures in case of problems and by performisguee discovery. This last step relies on thelavidity of
information from a Grid Information Service publist) the set of available remote resources from wite list of
candidates is selected in order to match the remgnts specified by the users.

The LB service is tightly coupled to the WMS andcls jobs managed by the WMS. It gathers eventa fro
WMS components providing the user with detailedinfation about the status of jobs during their wHidécycle.

In the following, communities of users, in gendyalonging to the same scientific experiment or gxbjwill be
addressed as Virtual Organizations (VOs). The JescBption Language (JDL) [3] is the syntax usedédéine the
profile of the workload submitted. It is based olagSified Advertisements also known as ClassAdstHat
through key/value pairs allow the user to spec#yiaus job characteristics (e.g. input files, exables, arguments,
output files, etc.) and to give directives for jdistribution, such as requirements on the locatibrtomputing
resources, hardware and software environment needed

WMS can handle various task types such as: sirgfiehbjobs, MPI jobs, Direct Acyclic Graph jobs — fhe
submission of job sets with complex internal dememiks, job collections — for the handling of groap
independent jobs, and finally parametric jobs,greup of tasks depending on a user-defined paeamet

2.1 WM S/LB Architecture Overview

WMSMonitor supports the tracking of jobs over vasghases of their processing cycle within the WWIge
job lifecycle is tied to the WMS and LB architeaar5] as shown iRigurel.

Workload Management Proxy (WMProxy) is the component responsible for acegpfob submission requests
from the user. It is implemented as a Web servizessible via either APIs or a command line intefairstly,
WMProxy authenticates and authorizes users (credeir the form of X509 proxy certificates are bsad).

In addition, a WMProxy subcomponent, thaiter-script, implements a mechanism to avoid machine overload.
Some server status indicators such as disk usagaprg usage and load average, are periodicallykeltedf values
exceed some configurable thresholds, additionakjdimissions are rejected. Moreover, WMProxy isharge of
handling the so-called us&andBox which is defined to be the set of files providesl iaput to the job for
processing, or as output of the computation phd$e WMS provides retrieving tools to access suddsfi
SandBoxes are transferred though a Grid File Teariafotocol (GFTP) [6] server running on the WM& hiae.

W
______ >R
‘ J
WS Serverl ‘ ? =
L
Server
;II BKServerd
)
Fermanen

DB

JC - Job Controller
LB Logging and
Bookeeping

LM - Log Monitor
GFTP - Grid FTP
WM - Workload

Figure 1. gLite WMS/LB architecture

WMProxy dispatches accepted submissions toWbekload Management (WM) component which, through a
resource discovery process knownMatch Making (MM), compares the job requirements against thailavie
Grid resources, with the purpose of selecting thetrauitable one.

The Compute Element (CE) is the Grid service that virtualizes compgtiesources to be used for job execution.
In order to increase the internal scalability, WEl$ports the submission of sets of jobs (job ctties) through
the invocation of a single atomic operation. Theiatéire is complemented by the capability to perfarsingle MM
computation for sets of jobs with similar requirens the so-calle@ulk Match Making mechanism [5]. If no
candidates CEs are found, the job is kept pending task queue and periodically reprocessed byMieuntil a
configurable timeout expires. Resource discovellieseon detailed information about resources anices
available in the infrastructure. Therefore, the Vigtiodically downloads data from various informatjproviders
and caches them internally. The number of CEs aiail for every group of Grid users (VO or subgrdups
considered in the MM process is stored in the meetli WM cache and indicated with the ter@Views. The WM
also evaluates how to deal with failed jobs anddiéex; according to the submission directives ofuber, if they
must be resubmitted or aborted.

Then, theJob Controller (JC) prepares the job for the Condor [7][8] sulsinis (i.e. creates the Condor submit
file) and passes the job to Condor scheduler wisiglesponsible for the actual submission to theotemesource.
Finally, Log Monitor (LM) parses the Condor log files, intercepts atmdles interesting job events such as changes in
status (“running”, “done”, “abort”, etc.). In adtin, it triggers resubmission of failed jobs by ging them to the
WM.

The LB is a stand alone service which interacté wie WMS and stores any advancement step inféwydie
of all jobs handled by the WMS. Users can retridegailed information about their own jobs by quegythe LB
server.

A local cache of the LB serveLBProxy) is maintained on the WMS for fast job informatimtrieval and to
preserve the WMS from LB response time issues.cBloe is refreshed as soon as jobs reach a fatabst

WMS components are not meant to upload job evergstty to the LB server, as this task is perfornedwo
separate steps by thegd and thdnterlogd services. The first one receives information fitie WMS components
and stores them on physical files (the so-catlg@dlog files). They should be seen as a queue of events [fer
file) that are waiting to be uploaded to the LBvser The Interlogd reads such files, extracts tbkevant
information, and sends it to the LB server. TheGlgg files are removed once successfully uploaded.

As already stated, the decision to accept or rghlseis based on the user credentials (a X509prexrificate)
sent with the job. This implies that the job life&@ can not exceed the validity time of the corresiimy user proxy
certificate. Since Grid proxy certificates usuddigt few hours there is a mechanism (it can béledaby the user)
to renew proxies that are about to expire. Theisemesponsible for this task is callBdoxyRenewal.

3. Requirements

Monitoring of Grid services, which are composedsefreral independent processes as shown in theopsevi
sections, can be challenging due to the large numbénteractions which take place. During its dijele, every
WMS job is exposed to a number of possible souoédailure, within the WMS (in case of troubles lwits inner
components) and/or in the remote resources.

Given the intrinsic complexity and error-prone matof distributed system, and to the large numifeseovice
instances deployed, in order to increase serviadadility, it is important to have tools that prptly detect failures
and collect/analyze information about status ofoal service instances. In fact, in the lack of swebnitoring
systems, the failure detection process relies @mual checks on every instance.

For Grid services based on multiple internal congmis such as the WMS, manual debugging is made even
more complex by the spread of information acros®rse sources such as the LB database, the dadowfites
and the tools for monitoring of the hardware whictsts the services (for examplemon [9]). This emphasizes the
importance of providing a single access point tpantant debugging information and to status keycirs for
multiple Grid service instances.

In addition to the above-mentioned needs, a furtle¢rof requirements applies to Grid services nesipte for
job scheduling. In order to control the full furwtality and efficiency of the scheduling processs itmportant to
gather information such as:

1. the number of jobs being submitted;

2. the job types;

3. the number of jobs flowing between the various iserinternal components (in order to spot bottlésgc
4. the number of jobs successfully completed.

Grid infrastructures supporting several VOs typicdeploy a large number of core service instaricesder to
ensure failover and load balancing. For this reaaggregation of data gathered for service clusgeirmportant in
various respects. For example, data may be aggegatr VO, but monitoring tools should give adniaiors the
freedom to specify arbitrary grouping rules (foraewple, according to the various roles: productiervers, test
servers, etc.).

The following Section details how these requireradr@ve been taken into account designing the WM $tiston
application.

4. WM SMonitor presentation

The WMSMonitor has been developed to meet the neledarious user categories:
e Grid service developers and performance testers,am interested in monitoring their services tpriove their
quality;
» advanced Grid users submitting a huge quantityob§,ji.e. to test the service scalability for thé® and,
possibly, the quality of the VO tools developeddatomatic submission;
* resource center managers that need per-VO aggdegtgtistics on service load and the service avititha
offered,;
* VO managers to obtain aggregated job statistiestd.cross check their monitoring tools.
In this Section we provide a description of thesidared metrics and of the software architectwetHis, each
component of the WMSMonitor application is descdlia detail. Finally we overview some operationsdues
related to common usage of the tool.

4.1 Metrics

The set of metrics adopted by WMSMonitor can beatlp divided into three main categories: Grid seayi
system and job flow metrics (see Section 2.1).
Grid service metrics:
« daemon status for WMProxy, Proxy Reneval, WM, LM., JC, LBProxy, FTPD
« number of file descriptors opened by WM, LM, JC, LL
¢ number of entries in the WM and JC queues and ogies
« number of GFTP open sessions
¢ number of VOViews
« Condor Job state statistics
* number of connections opened on ports used by bBcse
» daemon status for BKServerd and LL
System metrics:
e« CPU load average
« percentage of occupancy of disk partitions
Job flow metrics:
« number of jobs submitted to WMProxy from any usdsp reporting the number of collections of jobd a
the mean number of nodes per collection with nedasitandard deviation
¢ number of jobs queued to WM from WMProxy
e number of jobs queued to WM from LM, i.e. resubedttfter failure
« number of jobs queued to JC from WM
« number of jobs queued to Condor from JC
« number of jobs successfully completed
« number of jobs aborted

It should be noted that job flow metrics are dedifl®m LB queries and refer to time intervals (engmber of
jobs crossing the considered component within thet @5 minutes). On the other hand Grid service system
metrics report values referred to the exact timmeésurement.

4.2 Architecture

WMSMonitor is composed by a server on a dedicatadhine and agents hosted on the monitored Griicesr
(Figure 2).

MONITORING SERVER
Gul GRID SERVICE
GRID SERVICE
MONITORING AGENT

Data Collector | Request handler
Sensors
Persistent Storage

Figure 2. Overview of WMSMonitor architecture

Data
Aggregation

The server architecture is organized in three Ry&presentation layer, an application layer @mmnting data
collection and aggregation features and a persisterage layer. The monitoring agent consistsadfVeb service
exposing an interface for a set of sensors perfagrtie measurements.

The data collector application periodically triggethe execution of sensors on the monitored Griglices
through the Web service. The adoptida pull approach grants the on-demand data collectiortiuradity which
allows to: i) dynamically change the measuremesgfency in case of troublesome conditions for $igdostances;
ii) recollect job flow information in order to reme historical data inconsistencies (see Sectiéh Data collected
from each agent are inserted in the persistenag#oto provide an historical archive. Finally, dadaggregator
extracts and elaborates information from the ptensisstorage making it available for a Web-basexplgical user
interface.

To implement the described functional modules weettgpped a PHP based application for data aggregatid
presentation, over a MySQL DataBase as persisterdge. For the server/agent communication a SO#RoR
module was used.

4.2 Data Collector and Monitor Agent

s DATE RUNNING | IDLE wm Ic vo LB EVENTS = GPU SANDBOX GENERAL DAEMONS
JjoBs JOBS QUEUE QUEUE VIEWS QUEUE LoAD PARTITION STATUS STATUS
; 2008-04-11 # p
wms006.cnaf.infh.it Fr 15 651 3 o 5361 59 0.68 81 i @
; 2008-04-11
wms009.cnaf.infn.it e 3 19 o il 5364 o 0.4 51 @ @
2008-04-11
wms011.cnaf.infn.it s 61 671 o il 5381 7 0.83 43 @ (]
wms012.cnaf.infn.it 2008-04711 56 269 7 0 5361 43 0.85 48 [} @
10:45: 48
wms014.cnaf.infn.it 2L 1479 1940 3 0 5361 36 5.61 50 2 2
10:45:53
wms015.cnaf.infn.it ATl 125 2181] L 5361 [2.56 2 2 -]
1004611
wms017.cnaf.infn.it ZICC AT L 74 1442] 0 5361 4 1.50 2 @]
10:46: 18
egee-rb-04.cnaf.infi.it 23%?’;2%2711 o 19 o o 5364 0 1.35 26 (] (-]

Figure 3. Web interface: main page

This services are responsible for the scheduled uamdcheduled collection of data from each mondore
WMSI/LB instance.

Data collector module runs on the WMSMonitor seraérregular intervals or occasionally on demand. It
implements two main operationsidure 2): i) interacting with the agent request handlensnimg on monitored
WMS/LB instances, it triggers the sensors execuiipiit runs consistency checks on collected datd stores them
in the Persistent Storage module. In the currepiémentation, every 15 minutes a cron job execthiesdata
collector taking in input the list of WMSLB instag&to monitor.

On the monitored instances side, when requestshforcollection of a new series of data arrive thedber
performs authentication operations, and calls ao$dé®ython functions implementing the sensors famitored
variables. It also initializes the sensor supplytimgm with parameters coming from the data collecto

4.3 Web presentation service

The presentation service is a Web-based graphic ingerface designed to offer to WMS administrators
developers and VO advanced users monitored infiwméat a usable aggregated form. The graphical iderface
is divided in a main section reporting an overviefrprincipal status variables for all monitored WNt&tances
(Figure 3) and a details section for each specific instafaguie 4). A section with statistics about WMS service
usage by VOs is also provideidure 6). To access the Web pages a valid personal digitéficate and Adobe
Flash Player installed on the browser are required.

4.3.1 Main page description. (Figure 3) Monitored WMS instances can be grouped accordingréalefined
configurable sets, such as all the WMS dedicate@d 6O or specific role services. In order to sirfyplihe
administration of WMS services we introduced twonis that spot at a glance the overall status ofrtbances
services and running daemons respectively. Thesgs,icnormally in “OK” status, can switch to “Wargfnor
“Failure” status. The switch is triggered by a eétrules and thresholds defined to point out pdesiWMS/LB
service failure conditions. From this main page oae access both the specific WMS instance dgiaide and the
VOs stats page.

4.3.2 Specific WMS instance details page description. (Figure 4 and Figure 5) This section of the Web
interface is divided in peripheral boxes reportlatest series of acquired data in textual form ancentral box
reporting historic data series in graphical fornpliemented exploiting Open Flash Chart [10]. Thiumm box on
the left reports information about the WMS compdaethescribed in Section 2.1 with the exception @bndor
statistics. Data have been aggregated in orderadde the WMS administrator with a component faalisiew,
that allows the prompt identification of the pddgifailing service. On top of the page two boxessent HW status
data for both WMS and associated LB instancesrdtien Condor statistics. In these boxes a cordiglerlink is
provided to reach other external tool Web pagesitoiding the same instance, if available.

In the central box two sets of historic data sedss reported. A tabbed menu is provided to switetween
them. The first set of chart§igure 5) plots Condor statistics, component queues andathédlgw details between
WMS components across a user specified time pefibd.time resolution of these plots is determingdhe data
acquisition period, 15 minutes by default. Sinck flow sensors report the number of jobs passioggin each
component between each two contiguous measurenagtsgiven the slightly variable duration of suchei
windows (Section 4.4), we decided to normalize datdme unit presenting the mean job flow rateslin(Figure 5,
bottom charts). The second set of charts available in the tabun@nthe central box reports historic data about
component job flow as cumulative job number per degr a user specified time peridedure 4, left side charts).
In the same tab also a chart reporting the numbjebs per day ended itlone or aborted state is presented-igure
4, upper right chart).

In order to facilitate charts readability a box lwitumerical values pops up when pointing at the ploves
(Figure 5, bottom left chart).

4.3.3 VO statistics page. (Figure 6) This functionality provides the VO manager or achsthVO users with a
summary view of all jobs processed by dedicated \WMBSnstances within a user specified time winddwo tabs
are available aggregating data in graphical anai&xorm respectively.

In the Charts tab, on the left a daily summary cumulating datanf all selected instances within the specified
time period is reported. Bottom left chart repattie jobs submitted together with the jobs queuedéomdor
summarizing the number of jobs treated by the WMBtof view. The top left chart reports the fisthtus reached
by the treated jobs. On the right pie charts, timesinformation is aggregated per WMS instance twemwhole
time period.

In the Table tab a textual report presents cumulative datasactbe selected time window for each WMS
instance: the number of jobs submitted, the nurobeollection, the number of jobs done/aborted #mednumber of
jobs treated by Condor. Also a super-total repgrtime cumulative data over all WMS instances aner avhole
time period considered is reported.

4.4 Operational issues

In this section we address some operational isslated to the WMSMonitor tool usage. We start noering
the problem of dg20log files cumulating on the gLWMS instances in case of system overload. Thiése f
temporarily store on WMS disk jobs events waitiagoe archived into the LB database. Running a qtepptain
job flow statisticson the LB instance with some dg20log files stilltbe relative WMS instance would potentially
lead inconsistencies in the data. Therefore an-@pdate functionality has been implemented to tecol
correspondent data once the dg20log queue hasabserbed. Again, to assure consistency of theatatdave on a
daily basis we paid attention to dynamically antbmatically partition the 24h in contiguous but meerlapping
time interval for the job flow data extraction giest In fact even though the data collection iggered by a cron
job on regular time intervals, we had to take iabtcount different instances sensor response tineuping small
unpredictable delays.

It is worth mentioning that several tests undertiadied conditions were conduced to validate the BNbnitor
tool and assess reliability of collected data. atasistency was cross-checked with data obtaimed ihdependent
sources: no discrepancies were observed.

5. Use cases

In this section we first discuss the interpretatddmonitored variables in real WMS/LB administoatiscenarios
and then present use cases derived from monit@riofyster of WMS/LB instances during EGEE infrastuve
stress tests conducted by high energy physics coitigsi

N (General Info &t 2008-04-11 11:15:24 Lemon| Infa from LB alhalonga.cnaf.infh.it Lemon
- o5 WMS HW Status Job Stats (Condor) LB status 2

i @n”—@r Sandbox partition 81% Running jobs 14| |cpU load 0,21
3 /tenp partition 81% Idle jobs 65111/ partition 565

f CPU lpad 0.52 Total Condor jobs 2496(|| p caonnections 1

WMSNonitor Main >> Details::wms006.chaf.infn.it

_Gompanents Report History [Daily Statistics |]
: Plot a period of | 1 week | lending in|2008-04-11 |7 Submit
Job Flaw Job Final State

- Jobs -+ WMProxy obs 1 =—Jlobs Resub -> WM 2 GNE =—JOB_ABORTED
5,400 — A 3,600 —

WM Proxy

Jobs -> WMProxy
Collections submitted
Mean nodes per coll,
Std nodes per coll,

2,400 —

Proxy Reneval

006....00

Jobs

workload Manager
Wi file descriptors
Wi queue

Johs -5 Wi

Johs Resub = W
YO Views 538

1,200 —

oMW

Log Monitor Tirmne Tirme

LM file descriptors Job Flow

Job Controller ™ Total Jobs -> WM —lobs —Jobs - Condor

JC quaeue

1C file descriptor
Jobs -= 1C

Jobs IC -» Condar

6,300 —

Local Logger
LB events gqueus
LL file descriptor

LB Proxy

Tranfers
aftp

r 00T @6
Jobs

Figure 4. Web interface: detailed information about specific WMS

With reference to Section 4.1 we discuss the inggtion and integration of information relative WM S/LB
instances from the site administrator point of vide first category of measured variables are pameant to let
the WMS/LB administrator promptly know for severastances of WMS/LB in parallel about the occureené
potentially critical service failures. The quickteetion of daemons error (error code is reportadH@W/ error
conditions on WMS/LB instances, highlighted by drapl solutions in the Web interface, allows thenadstrator
to promptly recover from service unavailabilityusitions. As an example of such HW critical cormudisi consider
that self protection mechanism implemented on WNBSfirevents the server from accepting new submission
case of high CPU loads (>20 by default), or higtkdiccupancy (>90%) (see Section 2.1). These afriticnditions
have been frequently observed during intense s@mnisictivity.

Other monitored variables are meant as a suppartsévice unavailability prevention, informing the
administrator about overloaded services. As an el@ame mention services using too many file desargpor with
anomalous queues (WM, JC, LB), an high number aheotions opened by LB or high number of GFTP sessi
or no CEs resources available for the WMS MM openafVOViews sensor) causing the WM queue to inseea
indefinitely till jobs’ abortion, or disk space agzancy reaching the tolerance limit.

The category of variables (Section 4.1) focusingadnflow between WMS components gives useful imfation
about internal WMS dynamic, and provides admiatstrs, developers and performance testers (batim fr
developers and VOs communities) with a powerfulpsuptool for diagnosis of points of failures orttbenecks of
the service.

o= 2 = = 3 T e — N
| 1day v |endingon 2008-0225 & Submit
Condor Jobs Cormponents Queues
=R unnin T - - -
1,600 — Running job \ 3,900 = WM queu LB events queaus
."l‘. !-\‘. I'.
J \ 1
}I J 'L_H_
/ \ |
1,200 — . A \ 2,600 o |
ol /| / \
A | | s - |
% e0o— ! P w 1,300 4 |
" == e ,
\
\ '\.
°F 5 3 F i ——
; & & ' & & & &
o - o] 2 i P b i
g o o o a¥ o & o
Time Time
Job Flow Rates Job Flow Rates
mlcbs -> WMProxy =—lJot =Jobs Resub -> WM = Total Jobs -= WM = - =lobs -> Condor
0.99 = ™ 0.84 =
0.66 4 i 0.56 <
8 | lg| 02-25 12:30 2
6 .*l Rate: 0,962 o
] | Collections#: 11]
=08 Jobs# > WMProxy: 871 el izl
s Since: 02-25 12:15 a
W | }"
o 4 | A [\. I
o & S &
> > o o >
B’]' Qr" 0’\' L) 6"
Time

Figure 5. Internal WMS dynamics and job flow

Figure 5 illustrates an example of the mentioned WMS seriuternal dynamic exploration while monitoring a
VO dedicated instance during a performance teattiBg from Eigure 5, bottom left) we see peaks of few thousands
jobs submitted in about three hours to WMProxy althigrouped in collections (see Section 2), arelkdyi
processed and queued to WM. Grouping jobs in didles with bulk MM enabled (see Section 2.1) reduttee
WM time-through, so that jobs are quickly queuedI@ which serially process and queues them to Goatla
slower rate Eigure 5, bottom right). In (Figure 5, top right) we observe how that results in a peak in the JQigue
Also the LB job events transfer is under stressuoh conditions, resulting in a dg20log files quétigure 5, top
right). Finally in Figure 5, top left) we notice how in Condor, after submission peakgute 5, bottom left), the
number of idle jobs increases while the numbemuohing jobs stays stable. This has been interpieteah effect of
full queues on CE requested for the test jobs,@mdirmed by other information sources. The desttibcenario
puts in evidence how the main contribution to gl\WtS time-through comes from JC component whensuser
submit BulkMM enabled collections. This can be lyagsualized when considering how the peaks ofnrgigbions
to the WMProxy Figure 5, bottom left) result in a large queue just for the JC compohahhot for the WM Figure
5, top right). This example constitutes an important feedbackd&velopers considering that this submission type
(collection with BulkMM enabled) is becoming poputmong VOs. Regarding the queue in job eventsfeas to
the LB, it should be noted that these do not affeetWMS job processing time, but just causes aydigl users’
perception of job advancement status. This delfactsf the data collected by WMSMonitor in real tjirbat it is
handled by the auto-updater functionality descriimeSlection 4.4 once the queue is reabsorbed.

008-02-29 E_ Submit l
Job Final State per day

—re: [=|OB ABORTED Jobs Done per WMS Jobs Aborted per WMS
36,000 — =

24.000 —

lz‘m_\/\/_/\/_/\/

o J T T T T T T T . T T 1
[t T T I - I O
Lot T -

Time

Jobs

Submitted vs Condor per day
m=obs-> WMProxy —|abs-> Condor Submitted |obs per WMS Condor Jobs per WMS

51,000
34,000 . / -
WMS: wms006.cnaf.infn.it
8 Condor jobs: 123373
: =
17.000
B e R e e s
6‘"6 6"‘“ a"'p"o"'p o 6“:‘ " o 0"? v.\""\ a"'n' a"‘n' ¥ er'n' 6“"?

Figure 6. Aggregated statistics relative to a pool of WMS dedicated to a specific VO

As last use case we present the VO stats funciipmimiplemented in the Web presentation service({Se 4.3).
Figure 6 reports cumulative statistics relative to a camiive test performed over a month by an high gnerg
physics VO on a set of dedicated WMS instancesldikm this functionality we learn that, duringettwhole test,
roughly one million jobs were treated by the WMSopoonsidered. The distribution of jobs across WIS
instances is not homogeneous as can be seefigire(6, bottom left pie chart), where one instance is clearly
underused. This is useful feedback to the VO manigerder to better tune the VO submission todtshs were

submitted at a mean rate of 30K jobs per dagufe 6, bottom left chart). From the textual data in thiable tab
(Section 4.3.3) of the same Web page section wieetkthat 76% of submitted jobs ended in succésséite while
14% aborted and the remaining jobs ended in othal $tates (e.gCancelled by the user).

6. Conclusion

In this paper we presented WMSMonitor, a tool tonittr the WMS service, a Grid component which is
responsible for the key role of user task scheddtirnthe gLite middleware stack deployed within E®EE project
infrastructure.

The analysis of the presented use cases showedtim@ugh a usable Web interface, WMSMonitor proside
prompt overview of WMS service status and interdghamics, supporting administrators in detectingl an
debugging problems, and developers in spottingiceottlenecks. The paper showed how the usagis dfita
aggregation facilities, over time and over multig#S instances, can give helpful support to seveastgories of
users to monitor the submitted Grid workload duitsgentire lifecycle.

Encouraged by users feedback, future work will oon supplying them with more metrics helpful fdimize
Grid resources exploitation.

Acknowledgments

We wish to thank the WMS/LB developers team foirtkieluable help and support. Special thanks teégaco
Giacomini, Zdenek Salvet and Marco Cecchi.

References

[1] Enabling Grids for E-sciencE. Homepage: htypaiv.eu-egee.org/

[2] M. Gerndt, R. Wismueller, Z. Balaton, et aRerformance Tools for the Grid: State of the Ad &uture,
volume 30 of Research Report Series, LehrstuhlReshnertechnik und Rechnerorganisation (LRR-TUM)
Technische Universitaet Muenchen. Shaker VerlaQ4265BN 3-8322-2413-0.

[3] The JDL Attributes Specification, EGEE JRAL heial Report
(http://trinity.datamat.it/projects/EGEE/wiki/wikitp?n=JDL.AboutJD).

[4] http://www.cs.wisc.edu/condor/classad/

[5] P. Andreetto et alt.; The gLite Workload Managen&ystem; in Proc. Computing in High Energy anctidar
Physics (CHEP) 2007, Victoria, British Columbia (Z&ep 2007.

[6] W. Allcock; GridFTP: Protocol Extensions to FT& the Grid; Open Grid Forum final document, GEQ.Apr
2003

[7]1 D. Thain, T. Tannenbaum, and M. Livny, "Distribut€dmputing in Practice: The Condor Experience"
Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4, February-April, 2005, pp 32863

[8] T. Tannenbaum, D. Wright, K. Miller, and M. lay, "Condor - A Distributed Job Scheduler”, in Trasn
Sterling, editorBeowulf Cluster Computing with Linux, The MIT Press, 2002.ISBN:0-262-69274-0

[9] http://lemon.Web.cern.ch/lemon/index.shtml

[10] The Open Flash Chart project home page (Hitethgrinder.co.uk/open-flash-chart/)

10

